Abstract
We review studies of the interactions between magnetic order and the flux line lattice (FLL) in the (RE)Ni2B2C intermetallic borocarbides for (RE)=Tm and Er using small angle neutron scattering (SANS) and magneto-transport. For (RE)=Tm the magnetic order and the FLL assume a common symmetry, sharing a phase transition at ∼2 kOe, despite an order of magnitude difference in periodicity. For (RE)=Er, the penetration depth λ and the coherence length ξ, both of which are derived from the FLL form factor, are modified near TN=6 K by a theoretically predicted weakly divergent pairbreaking. Finally, below 2.3 K, (RE)=Er shows a coexistence of weak ferromagnetism and superconductivity. This state reveals a highly disordered FLL and a striking increase in the critical current, both arising from the strong ferromagnetic pairbreaking.
Original language | English (US) |
---|---|
Pages (from-to) | 5544-5548 |
Number of pages | 5 |
Journal | Journal of Applied Physics |
Volume | 87 |
Issue number | 9 II |
DOIs | |
State | Published - May 2000 |
Event | 44th Annual Conference on Magnetism and Magnetic Materials - San Jose, CA, United States Duration: Nov 15 1999 → Nov 18 1999 |
All Science Journal Classification (ASJC) codes
- General Physics and Astronomy