TY - JOUR
T1 - Intracellular calcium uptake activated by GTP. Evidence for a possible guanine nucleotide-induced transmembrane conveyance of intracellular calcium.
AU - Mullaney, J. M.
AU - Chueh, S. H.
AU - Ghosh, T. K.
AU - Gill, D. L.
N1 - Copyright:
This record is sourced from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine
PY - 1987/10/5
Y1 - 1987/10/5
N2 - The GTP-activated Ca2+ release process we recently described (Gill, D. L., Ueda, T., Chueh, S. H., and Noel, M. W. (1986) Nature 320, 461-464) was revealed in the preceding report to operate via a mechanism likely to be induced by close membrane association but which appears not to involve membrane fusion (Chueh, S. H., Mullaney, J. M., Ghosh, T. K., Zachary, A. L., and Gill, D. L. (1987) J. Biol. Chem. 262, 13857-13864). To determine more about the GTP-activated Ca2+ translocation process, effects of GTP on cells loaded with Ca-oxalate were investigated. Using permeabilized cells of both the N1E-115 neuroblastoma and DDT1MF-2 smooth muscle cell lines, 10 microM GTP activates a profound uptake of Ca2+ in the presence of oxalate, as opposed to release observed without oxalate. GTP stimulation of Ca2+ uptake was observed at oxalate concentrations (2 mM) only slightly augmenting Ca2+ uptake without GTP; with 8 mM oxalate (which alone induces linear Ca2+ accumulation) GTP still increases the rate of uptake. GTP-activated uptake in the presence of oxalate is completely reversed by 1 mM vanadate. 3% polyethylene glycol enhances the effect of GTP although GTP-activated uptake is still observed without polyethylene glycol. The Km for GTP for activation of Ca2+ uptake is 0.9 microM. Uptake is not activated by guanosine 5'-O-(3-thio)triphosphate (GTP gamma S) or guanosine 5'-(beta, gamma-imido)triphosphate (GppNHp); however, GTP gamma S (but not GppNHp) completely blocks the action of GTP. GDP gives a delayed uptake response which is blocked by ADP, indicating its action arises from conversion to GTP. In the presence of ADP, GDP blocks the action of GTP; guanosine 5'-O-(2-thio)diphosphate, which does not activate uptake, also blocks the action of GTP. These data reveal almost exact correlation between parameters affecting GTP-activated uptake and release, strongly suggesting the same process mediates both events. To explain the opposite effects of GTP in the absence and presence of oxalate, it is proposed that GTP activates a transmembrane conveyance of Ca2+ between oxalate-permeable and -impermeable compartments.
AB - The GTP-activated Ca2+ release process we recently described (Gill, D. L., Ueda, T., Chueh, S. H., and Noel, M. W. (1986) Nature 320, 461-464) was revealed in the preceding report to operate via a mechanism likely to be induced by close membrane association but which appears not to involve membrane fusion (Chueh, S. H., Mullaney, J. M., Ghosh, T. K., Zachary, A. L., and Gill, D. L. (1987) J. Biol. Chem. 262, 13857-13864). To determine more about the GTP-activated Ca2+ translocation process, effects of GTP on cells loaded with Ca-oxalate were investigated. Using permeabilized cells of both the N1E-115 neuroblastoma and DDT1MF-2 smooth muscle cell lines, 10 microM GTP activates a profound uptake of Ca2+ in the presence of oxalate, as opposed to release observed without oxalate. GTP stimulation of Ca2+ uptake was observed at oxalate concentrations (2 mM) only slightly augmenting Ca2+ uptake without GTP; with 8 mM oxalate (which alone induces linear Ca2+ accumulation) GTP still increases the rate of uptake. GTP-activated uptake in the presence of oxalate is completely reversed by 1 mM vanadate. 3% polyethylene glycol enhances the effect of GTP although GTP-activated uptake is still observed without polyethylene glycol. The Km for GTP for activation of Ca2+ uptake is 0.9 microM. Uptake is not activated by guanosine 5'-O-(3-thio)triphosphate (GTP gamma S) or guanosine 5'-(beta, gamma-imido)triphosphate (GppNHp); however, GTP gamma S (but not GppNHp) completely blocks the action of GTP. GDP gives a delayed uptake response which is blocked by ADP, indicating its action arises from conversion to GTP. In the presence of ADP, GDP blocks the action of GTP; guanosine 5'-O-(2-thio)diphosphate, which does not activate uptake, also blocks the action of GTP. These data reveal almost exact correlation between parameters affecting GTP-activated uptake and release, strongly suggesting the same process mediates both events. To explain the opposite effects of GTP in the absence and presence of oxalate, it is proposed that GTP activates a transmembrane conveyance of Ca2+ between oxalate-permeable and -impermeable compartments.
UR - http://www.scopus.com/inward/record.url?scp=0023645605&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0023645605&partnerID=8YFLogxK
M3 - Article
C2 - 3654640
AN - SCOPUS:0023645605
SN - 0021-9258
VL - 262
SP - 13865
EP - 13872
JO - The Journal of biological chemistry
JF - The Journal of biological chemistry
IS - 28
ER -