Abstract
A close correlation was observed between intracellular Ca2+ pool depletion and refilling and the onset of DNA synthesis and proliferation of DDT1MF-2 smooth muscle cells. The intracellular Ca2+ pump inhibitors 2,5-di-tert-butylhydroquinone (DBHQ) and thapsigargin (TG) specifically emptied identical inositol 1,4,5-trisphosphate (InsP3)-sensitive Ca2+ pools and both arrested cell growth at concentrations corresponding to Ca2+ pump blockade. However, an important distinction was observed between the two inhibitors with respect to their reversibility of action. Upon removal of DBHQ from DBHQ-arrested cells, Ca2+ pools immediately refilled, and 14 hr later cells entered S phase followed by normal cell proliferation; the time for entry into S phase was identical to that for cells released from confluence arrest. Although TG irreversibly blocked Ca2+ pumping and emptied Ca2+ pools, high serum treatment of TG-arrested cells induced recovery of functional Ca2+ pools in 6 hr (via probable synthesis of new pump); thereafter cells proceeded to S phase and normal cell proliferation within the same time period (14 hr) as that following release of DBHQ-arrested cells. The precise relationship between Ca2+ pump blockade and growth arrest indicates that Ca2+ pool emptying maintains cells in a G0-like quiescent state; upon refilling of pools, normal progression into the cell cycle is resumed. It is possible that a specific cell cycle event necessary for G0 to G1 transition depends upon signals generated from the InsP3-sensitive Ca2+ pool.
Original language | English (US) |
---|---|
Pages (from-to) | 4986-4990 |
Number of pages | 5 |
Journal | Proceedings of the National Academy of Sciences of the United States of America |
Volume | 90 |
Issue number | 11 |
State | Published - Jun 1 1993 |
All Science Journal Classification (ASJC) codes
- General