TY - JOUR
T1 - Intracellular vesicle clusters are organelles that synthesize extracellular vesicle-associated cargo proteins in yeast
AU - Winters, Chelsea M.
AU - Hong-Brown, Ly Q.
AU - Chiang, Hui Ling
N1 - Publisher Copyright:
© 2020 Winters et al.
PY - 2020/2/28
Y1 - 2020/2/28
N2 - Extracellular vesicles (EVs) play important roles in cell-cell communication. In budding yeast (Saccharomyces cerevisiae), EVs function as carriers to transport cargo proteins into the periplasm for storage during glucose starvation. However, intracellular organelles that synthesize these EV-associated cargo proteins have not been identified. Here, we investigated whether cytoplasmic organelles-called intracellular vesicle clusters (IVCs)-serve as sites for the synthesis of proteins targeted for secretion as EV-associated proteins. Using proteomics, we identified 377 IVC-associated proteins in yeast cells grown under steady-state low-glucose conditions, with the largest group being involved in protein translation. Isolated IVCs exhibited protein synthesis activities that required initiation and elongation factors. We have also identified 431 newly synthesized proteins on isolated IVCs. Expression of 103Q-GFP, a foreign protein with a long polyglutamine extension, resulted in distribution of this protein as large puncta that co-localized with IVC markers, including fructose-1,6-bisphosphatase (FBPase) and the vacuole import and degradation protein Vid24p.Wedid not observe this pattern in cycloheximide-treated cells or in cells lacking VID genes, required for IVC formation. The induction of 103Q-GFP on IVCs adversely affected total protein synthesis in intact cells and on isolated IVCs. This expression also decreased levels of EV-associated cargo proteins in the extracellular fraction without affecting the number of secreted EVs. Our results provide important insights into the functions of IVCs as sites for the synthesis of EV-associated proteins targeted for secretion to the periplasm.
AB - Extracellular vesicles (EVs) play important roles in cell-cell communication. In budding yeast (Saccharomyces cerevisiae), EVs function as carriers to transport cargo proteins into the periplasm for storage during glucose starvation. However, intracellular organelles that synthesize these EV-associated cargo proteins have not been identified. Here, we investigated whether cytoplasmic organelles-called intracellular vesicle clusters (IVCs)-serve as sites for the synthesis of proteins targeted for secretion as EV-associated proteins. Using proteomics, we identified 377 IVC-associated proteins in yeast cells grown under steady-state low-glucose conditions, with the largest group being involved in protein translation. Isolated IVCs exhibited protein synthesis activities that required initiation and elongation factors. We have also identified 431 newly synthesized proteins on isolated IVCs. Expression of 103Q-GFP, a foreign protein with a long polyglutamine extension, resulted in distribution of this protein as large puncta that co-localized with IVC markers, including fructose-1,6-bisphosphatase (FBPase) and the vacuole import and degradation protein Vid24p.Wedid not observe this pattern in cycloheximide-treated cells or in cells lacking VID genes, required for IVC formation. The induction of 103Q-GFP on IVCs adversely affected total protein synthesis in intact cells and on isolated IVCs. This expression also decreased levels of EV-associated cargo proteins in the extracellular fraction without affecting the number of secreted EVs. Our results provide important insights into the functions of IVCs as sites for the synthesis of EV-associated proteins targeted for secretion to the periplasm.
UR - http://www.scopus.com/inward/record.url?scp=85080915285&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85080915285&partnerID=8YFLogxK
U2 - 10.1074/jbc.RA119.008612
DO - 10.1074/jbc.RA119.008612
M3 - Article
C2 - 31974164
AN - SCOPUS:85080915285
SN - 0021-9258
VL - 295
SP - 2650
EP - 2663
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 9
ER -