Intrinsic Conductance of Domain Walls in BiFeO3

Yi Zhang, Haidong Lu, Xingxu Yan, Xiaoxing Cheng, Lin Xie, Toshihiro Aoki, Linze Li, Colin Heikes, Shu Ping Lau, Darrell G. Schlom, Longqing Chen, Alexei Gruverman, Xiaoqing Pan

Research output: Contribution to journalArticlepeer-review

44 Scopus citations


Ferroelectric domain walls exhibit a number of new functionalities that are not present in their host material. One of these functional characteristics is electrical conductivity that may lead to future device applications. Although progress has been made, the intrinsic conductivity of BiFeO3 domain walls is still elusive. Here, the intrinsic conductivity of 71° and 109° domain walls is reported by probing the local conductance over a cross section of the BiFeO3/TbScO3 (001) heterostructure. Through a combination of conductive atomic force microscopy, high-resolution electron energy loss spectroscopy, and phase-field simulations, it is found that the 71° domain wall has an inherently charged nature, while the 109° domain wall is close to neutral. Hence, the intrinsic conductivity of the 71° domain walls is an order of magnitude larger than that of the 109° domain walls associated with bound-charge-induced bandgap lowering. Furthermore, the interaction of adjacent 71° domain walls and domain wall curvature leads to a variation of the charge distribution inside the walls, and causes a discontinuity of potential in the [110]p direction, which results in an alternative conductivity of the neighboring 71° domain walls, and a low conductivity of the 71° domain walls when measurement is taken from the film top surface.

Original languageEnglish (US)
Article number1902099
JournalAdvanced Materials
Issue number36
StatePublished - Sep 1 2019

All Science Journal Classification (ASJC) codes

  • General Materials Science
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'Intrinsic Conductance of Domain Walls in BiFeO3'. Together they form a unique fingerprint.

Cite this