TY - CHAP
T1 - Introduction to Machine Learning Methods in Energy Engineering
AU - Moradzadeh, Arash
AU - Mohammadi-Ivatloo, Behnam
AU - Pourhossein, Kazem
AU - Nazari-Heris, Morteza
AU - Asadi, Somayeh
N1 - Publisher Copyright:
© 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2021
Y1 - 2021
N2 - Nowadays, the increasing energy demand, development of smart grids, and the combination of different energy systems have led to the complexity of power systems. On the other hand, ever-expanding energy consumption, development of industry and technology systems, and high penetration of solar and wind energies have made electricity networks operate in more complex and uncertain conditions. Therefore, analysis of traditional power and energy systems requires physical modeling and extensive numerical computation. To analyze these systems’ behavior, advanced metering and condition monitoring devices and systems are utilized, which generate huge amounts of data. Assessment of these data is approximately impossible by conventional methods and requires powerful data mining procedures. Machine learning, deep learning, and a variety of regression, classification, and clustering algorithms are powerful tools to use in these issues. These procedures can be utilized for load/demand forecasting, demand response evaluation, defect/fault detection in electrical equipment, power system analysis and control, cybersecurity, and renewable energy generation prediction. Understanding the structure and functioning of each learning method is therefore one of the most important issues in the application of them to solve power system problems. In this chapter, we will introduce and discuss selected methods of data mining based on their learning, structure, formulation, mode of operation, and application in power systems. Literature on machine learning and deep learning procedures, train and test process of networked methods, and, finally, applications of each procedure are presented in this chapter.
AB - Nowadays, the increasing energy demand, development of smart grids, and the combination of different energy systems have led to the complexity of power systems. On the other hand, ever-expanding energy consumption, development of industry and technology systems, and high penetration of solar and wind energies have made electricity networks operate in more complex and uncertain conditions. Therefore, analysis of traditional power and energy systems requires physical modeling and extensive numerical computation. To analyze these systems’ behavior, advanced metering and condition monitoring devices and systems are utilized, which generate huge amounts of data. Assessment of these data is approximately impossible by conventional methods and requires powerful data mining procedures. Machine learning, deep learning, and a variety of regression, classification, and clustering algorithms are powerful tools to use in these issues. These procedures can be utilized for load/demand forecasting, demand response evaluation, defect/fault detection in electrical equipment, power system analysis and control, cybersecurity, and renewable energy generation prediction. Understanding the structure and functioning of each learning method is therefore one of the most important issues in the application of them to solve power system problems. In this chapter, we will introduce and discuss selected methods of data mining based on their learning, structure, formulation, mode of operation, and application in power systems. Literature on machine learning and deep learning procedures, train and test process of networked methods, and, finally, applications of each procedure are presented in this chapter.
UR - http://www.scopus.com/inward/record.url?scp=85117929834&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85117929834&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-77696-1_4
DO - 10.1007/978-3-030-77696-1_4
M3 - Chapter
AN - SCOPUS:85117929834
T3 - Power Systems
SP - 61
EP - 82
BT - Power Systems
PB - Springer Science and Business Media Deutschland GmbH
ER -