@inproceedings{ce40fe93ede3450ab88bd6f017787631,
title = "Inverse design of three-dimensional nanoantennas for metasurface applications",
abstract = "Recent advances in manufacturing techniques have been made to match the demand for high performance optical devices. To this end, tremendous research activity has been focused on optical metasurfaces as they offer a unique potential to achieve disruptive designs when paired with innovative fabrication techniques and inverse design tools. However, most metasurface designs have revolved around canonical geometries. While these elements are relatively easy to fabricate, they represent only a small portion of the design space, and rarely offer peak performance in transmission, phase range or field of view. In this work, a Lazy Ant Colony Optimization (LACO) technique is applied in conjunction with a full-wave solver using the Periodic Finite Element Boundary Integral (PFEBI) method to reveal high performing three-dimensional nanoantenna designs with potential applications for a variety of optical devices.",
author = "Zhu, {Danny Z.} and Whiting, {Eric B.} and Campbell, {Sawyer D.} and Werner, {Pingjuan L.} and Werner, {Douglas H.}",
note = "Publisher Copyright: {\textcopyright} 2019 ACES.; 2019 International Applied Computational Electromagnetics Society Symposium in Miami, ACES-Miami 2019 ; Conference date: 14-04-2019 Through 18-04-2019",
year = "2019",
month = may,
day = "10",
language = "English (US)",
series = "2019 International Applied Computational Electromagnetics Society Symposium in Miami, ACES-Miami 2019",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
booktitle = "2019 International Applied Computational Electromagnetics Society Symposium in Miami, ACES-Miami 2019",
address = "United States",
}