Investigating the performance and properties of dielectric elastomer actuators as a potential means to actuate origami structures

Research output: Contribution to journalArticlepeer-review

61 Scopus citations


Origami engineering aims to combine origami principles with advanced materials to yield active origami shapes, which fold and unfold in response to external stimuli. This paper explores the potential and limitations of dielectric elastomers (DEs) as the enabling material in active origami engineering. DEs are compliant materials in which the coupled electro-mechanical actuation takes advantage of their low modulus and high breakdown strength. Until recently, prestraining of relatively thick DE materials was necessary in order to achieve the high electric fields needed to trigger electrostatic actuation without inducing a dielectric breakdown. Although prestrain improves the breakdown strength of the DE films and reduces the voltage required for actuation, the need for a solid frame to retain the prestrain state is a limitation for the practical implementation of DEs, especially for active origami structures. However, the recent availability of thinner DE materials (50 μm, 130 μm, 260 μm) has made DEs a likely medium for active origami. In this work, the folding and unfolding of DE multilayered structures, along with the realization of origami-inspired 3D shapes, are explored. In addition, an exhaustive study on the fundamentals of DE actuation is done by directly investigating the thickness actuation mechanism and comparing their performance using different electrode types. Finally, changes in dielectric permittivity as a function of strain, electrode type and applied electric field are assessed and analyzed. These fundamental studies are key to obtaining more dramatic folding and to realizing active origami structures using DE materials.

Original languageEnglish (US)
Article number094003
JournalSmart Materials and Structures
Issue number9
StatePublished - Sep 2014

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Civil and Structural Engineering
  • Atomic and Molecular Physics, and Optics
  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Electrical and Electronic Engineering


Dive into the research topics of 'Investigating the performance and properties of dielectric elastomer actuators as a potential means to actuate origami structures'. Together they form a unique fingerprint.

Cite this