Investigation of acoustic signals during W1 tool steel quenching

Research output: Chapter in Book/Report/Conference proceedingConference contribution

10 Scopus citations

Abstract

Quenching is an important part of the heat treatment process for strengthening medium and high carbon steels. In the heat treatment cycle, the metal is heated to a desired temperature (above the eutectoid temperature) in the furnace and then cooled in a fluid medium such as water, brine, oil or air. Depending on the cooling rate, the mechanical and metallurgical properties of the metal can be altered in order to achieve the specific design parameters that are required by the part. The process in which the metal is cooled rapidly is termed the quenching process. Due to rapid cooling in a medium, such as water, brine, or oil, the quenching process produces an audible sound signature, as well as, acoustic emissions. In this paper, W1 tool steel is investigated through the use of a beam former that is equipped with 32 microphones. Using this device, it is demonstrated that the audible sounds that are produced when quenching depend on the heat treatment temperature and the size of the specimen.

Original languageEnglish (US)
Title of host publicationMaterials; Biomanufacturing; Properties, Applications and Systems; Sustainable Manufacturing
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791856833
DOIs
StatePublished - 2015
EventASME 2015 International Manufacturing Science and Engineering Conference, MSEC 2015 - Charlotte, United States
Duration: Jun 8 2015Jun 12 2015

Publication series

NameASME 2015 International Manufacturing Science and Engineering Conference, MSEC 2015
Volume2

Other

OtherASME 2015 International Manufacturing Science and Engineering Conference, MSEC 2015
Country/TerritoryUnited States
CityCharlotte
Period6/8/156/12/15

All Science Journal Classification (ASJC) codes

  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Investigation of acoustic signals during W1 tool steel quenching'. Together they form a unique fingerprint.

Cite this