Investigation of background electron emission in the LUX detector

D. S. Akerib, S. Alsum, H. M. Araújo, X. Bai, J. Balajthy, A. Baxter, E. P. Bernard, A. Bernstein, T. P. Biesiadzinski, E. M. Boulton, B. Boxer, P. Brás, S. Burdin, D. Byram, M. C. Carmona-Benitez, C. Chan, J. E. Cutter, L. De Viveiros, E. Druszkiewicz, A. FanS. Fiorucci, R. J. Gaitskell, C. Ghag, M. G.D. Gilchriese, C. Gwilliam, C. R. Hall, S. J. Haselschwardt, S. A. Hertel, D. P. Hogan, M. Horn, D. Q. Huang, C. M. Ignarra, R. G. Jacobsen, O. Jahangir, W. Ji, K. Kamdin, K. Kazkaz, D. Khaitan, E. V. Korolkova, S. Kravitz, V. A. Kudryavtsev, E. Leason, B. G. Lenardo, K. T. Lesko, J. Liao, J. Lin, A. Lindote, M. I. Lopes, A. Manalaysay, R. L. Mannino, N. Marangou, D. N. McKinsey, D. M. Mei, M. Moongweluwan, J. A. Morad, A. St J. Murphy, A. Naylor, C. Nehrkorn, H. N. Nelson, F. Neves, A. Nilima, K. C. Oliver-Mallory, K. J. Palladino, E. K. Pease, Q. Riffard, G. R.C. Rischbieter, C. Rhyne, P. Rossiter, S. Shaw, T. A. Shutt, C. Silva, M. Solmaz, V. N. Solovov, P. Sorensen, T. J. Sumner, M. Szydagis, D. J. Taylor, R. Taylor, W. C. Taylor, B. P. Tennyson, P. A. Terman, D. R. Tiedt, W. H. To, L. Tvrznikova, U. Utku, S. Uvarov, A. Vacheret, V. Velan, R. C. Webb, J. T. White, T. J. Whitis, M. S. Witherell, F. L.H. Wolfs, D. Woodward, J. Xu, C. Zhang

Research output: Contribution to journalArticlepeer-review

33 Scopus citations


Dual-phase xenon detectors, as currently used in direct detection dark matter experiments, have observed elevated rates of background electron events in the low energy region. While this background negatively impacts detector performance in various ways, its origins have only been partially studied. In this paper we report a systematic investigation of the electron pathologies observed in the LUX dark matter experiment. We characterize different electron populations based on their emission intensities and their correlations with preceding energy depositions in the detector. By studying the background under different experimental conditions, we identified the leading emission mechanisms, including photoionization and the photoelectric effect induced by the xenon luminescence, delayed emission of electrons trapped under the liquid surface, capture and release of drifting electrons by impurities, and grid electron emission. We discuss how these backgrounds can be mitigated in LUX and future xenon-based dark matter experiments.

Original languageEnglish (US)
Article number092004
JournalPhysical Review D
Issue number9
StatePublished - Nov 10 2020

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics


Dive into the research topics of 'Investigation of background electron emission in the LUX detector'. Together they form a unique fingerprint.

Cite this