Abstract
The dielectric and electromechanical properties of fully ordered Ca 3TaGa3Si2O14 (CTGS) crystals were investigated over the temperature range of -60∼700 C. The highest electromechanical coupling factor, k26 (18.9%) and piezoelectric coefficient, d26 (-11.5 pC/N) were obtained for (YXl)-25° cuts. The temperature dependent behavior of resonance frequency (fr) was investigated in single-rotated thickness shear mode (TSM) (YXl)θ cuts (θ-35°∼10°). The turnover temperatures of resonance frequency were found to increase from 20°C to 330°C, as the rotation angle varied from -22.5° to -35°. Bulk acoustic wave (BAW) resonators based on Y(-30) monolithic disks with a fundamental frequency ∼2.87 MHz were fabricated, where the in air mechanical quality factor Q was found to be on the order of 24000 and 10000 at 20°C and 700°C, respectively. The high coupling k26, high mechanical Q, and high electrical resistivity (16 Mcm) at 700°C, together with the near zero TCF characteristics at elevated temperatures, demonstrate the potential of CTGS crystals for high temperature sensor applications.
Original language | English (US) |
---|---|
Article number | 114103 |
Journal | Journal of Applied Physics |
Volume | 109 |
Issue number | 11 |
DOIs | |
State | Published - Jun 1 2011 |
All Science Journal Classification (ASJC) codes
- General Physics and Astronomy