@inproceedings{7cae5d40c14f4108a89bd8e9d95b058c,
title = "Investigation of Cavitation in Water Droplet Breakup from Shock Waves",
abstract = "The deformation and breakup of water droplets impacted by a shock wave has been largely attributed to surface mechanisms. This study investigates the possibility of cavitation-induced droplet breakup. Shock waves of Mach 4 are used in this study to impact groups of droplets, both groups of degassed droplets and a group of non-degassed droplets. Distilled water droplets on the order of 1-3 mm in diameter are introduced into the shock tube. High speed images and deformation plots are used to explore the existence of cavitation in the droplets, as well as how they deform comparatively.",
author = "Sydney Briggs and Nicolas Berube and Daniel Dyson and Anthony Aguilera and Michael Kinzel and Sheryl Grace and Phillip Anderson and Vasu, {Subith S.}",
note = "Publisher Copyright: {\textcopyright} 2024 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.; AIAA SciTech Forum and Exposition, 2024 ; Conference date: 08-01-2024 Through 12-01-2024",
year = "2024",
doi = "10.2514/6.2024-2191",
language = "English (US)",
isbn = "9781624107115",
series = "AIAA SciTech Forum and Exposition, 2024",
publisher = "American Institute of Aeronautics and Astronautics Inc, AIAA",
booktitle = "AIAA SciTech Forum and Exposition, 2024",
}