TY - GEN
T1 - Investigation of hydrogen assisted cracking in pressure vessels
AU - Homrossukon, Samerjit
AU - Mostovoy, Sheldon
AU - Todd, Judith A.
PY - 2006
Y1 - 2006
N2 - Hydrogen assisted cracking (HAC) has been investigated in high strength 4140 and low strength Z17D pressure vessel steels, charged at -50 mA/cm 2 in 1N H2SO4 + 25 mg/1 As2O 3 and tested under three-point bend decreasing load. The HAC growth rate for Z17D steel (1.4×10-7 cm/s) was found to be approximately two orders of magnitude slower than that of 4140 steel (3.3×10-5 cm/s), while the threshold stress intensity factor for Z17D steel (∼37 MPa√m) was significantly higher than that of 4140 steel (∼7 MPa√m). This research will show that a single analytical model, based on the hypothesis that hydrogen both reduces crack resistance (R) and increases crack driving force (G), can explain HAC in 4140 and Z17D steels. The model predicts the hydrogen concentration required to initiate HAC as a function of the stress intensity factor and yield strength of the steel. Hydrogen-induced reduction of R was found to dominate HAC in 4140 steel, while hydrogen-induced reduction of R was combined with an increase in G for HAC cracking of Z17D steel.
AB - Hydrogen assisted cracking (HAC) has been investigated in high strength 4140 and low strength Z17D pressure vessel steels, charged at -50 mA/cm 2 in 1N H2SO4 + 25 mg/1 As2O 3 and tested under three-point bend decreasing load. The HAC growth rate for Z17D steel (1.4×10-7 cm/s) was found to be approximately two orders of magnitude slower than that of 4140 steel (3.3×10-5 cm/s), while the threshold stress intensity factor for Z17D steel (∼37 MPa√m) was significantly higher than that of 4140 steel (∼7 MPa√m). This research will show that a single analytical model, based on the hypothesis that hydrogen both reduces crack resistance (R) and increases crack driving force (G), can explain HAC in 4140 and Z17D steels. The model predicts the hydrogen concentration required to initiate HAC as a function of the stress intensity factor and yield strength of the steel. Hydrogen-induced reduction of R was found to dominate HAC in 4140 steel, while hydrogen-induced reduction of R was combined with an increase in G for HAC cracking of Z17D steel.
UR - http://www.scopus.com/inward/record.url?scp=33751307482&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33751307482&partnerID=8YFLogxK
U2 - 10.1115/PVP2006-ICPVT-11-93923
DO - 10.1115/PVP2006-ICPVT-11-93923
M3 - Conference contribution
AN - SCOPUS:33751307482
SN - 0791837823
SN - 9780791837825
T3 - American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
BT - Proceedings of 2006 ASME Pressure Vessels and Piping Division Conference - ASME PVP2006/ICPVT-11 Conference - Pressure Vessel Technologies for the Global Community
T2 - ASME PVP2006/ICPVT-11 Conference
Y2 - 23 July 2006 through 27 July 2006
ER -