TY - GEN
T1 - Investigation of methods for including real vane geometry in predictions of fan broadband noise
AU - Grace, Sheryl M.
AU - Villafranco, Dorien
AU - Wixom, Andy
N1 - Publisher Copyright:
© 2016, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2016
Y1 - 2016
N2 - Two methods for increasing the geometric fidelity of a fan-stage, broadband, interaction-noise model are investigated. The increase in fidelity is sought in order to eliminate the dependence on stagger selection that exists when vanes are modeled as flat plates. First, a blade-vortex interaction (BVI) technique is considered for obtaining a subsonic, 2D, unsteady, real-geometry cascade response that can be readily incorporated into an existing low-order broadband model. A description of the overall method and results from the development of the cascade-BVI are presented. Second, a method for utilizing a linearized Euler calculation that has been presented in the literature previously is reviewed and discussed. Preliminary findings from an attempt to utilize LINFLUX as the linearized Euler solver in the broadband model are described.
AB - Two methods for increasing the geometric fidelity of a fan-stage, broadband, interaction-noise model are investigated. The increase in fidelity is sought in order to eliminate the dependence on stagger selection that exists when vanes are modeled as flat plates. First, a blade-vortex interaction (BVI) technique is considered for obtaining a subsonic, 2D, unsteady, real-geometry cascade response that can be readily incorporated into an existing low-order broadband model. A description of the overall method and results from the development of the cascade-BVI are presented. Second, a method for utilizing a linearized Euler calculation that has been presented in the literature previously is reviewed and discussed. Preliminary findings from an attempt to utilize LINFLUX as the linearized Euler solver in the broadband model are described.
UR - http://www.scopus.com/inward/record.url?scp=85057294095&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85057294095&partnerID=8YFLogxK
U2 - 10.2514/6.2016-2946
DO - 10.2514/6.2016-2946
M3 - Conference contribution
AN - SCOPUS:85057294095
SN - 9781624103865
T3 - 22nd AIAA/CEAS Aeroacoustics Conference, 2016
BT - 22nd AIAA/CEAS Aeroacoustics Conference
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - 22nd AIAA/CEAS Aeroacoustics Conference, 2016
Y2 - 30 May 2016 through 1 June 2016
ER -