Investigation of water bound to photosystem i with multiquantum filtered O17 nuclear magnetic resonance

M. Krzystyniak, Gaozhong Shen, John H. Golbeck, Mikhail L. Antonkine

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

A new analytical approach was developed to characterize the properties of water molecules bound to macromolecules in solution using O17 nuclear magnetic resonance (NMR) relaxation. A combination of conventional (single-quantum) and triple-quantum filtered Hahn echo and inversion recovery measurements was employed. From measured relaxation rate constants, the fraction and the correlation time of bound H2 O17 molecules and the relaxation rate constant of bulk water in solution were calculated. This was done by solving analytically a set of nonlinear equations describing the overall relaxation rate constants in the presence of chemical exchange between bulk and bound water. The analytical approach shows the uniqueness of the solution for a given set of three relaxation rate constants. This important result sheds light on the data reduction problem from O17 NMR experiments on biological systems. Water bound in photosystem I isolated from the wild type and rubA variant of the cyanobacterium Synechocystis species PCC 7002 was investigated for the first time. The analysis revealed that photosystem I isolated from the wild type binds 1720±110 water molecules, whereas photosystem I isolated from the rubA variant binds only 1310±170. The accuracy of the method proposed can be increased by further O17 enrichment. The methodology, established for the first time in this work, allows the study of a diverse range of biological samples regardless of their size and molecular weight. Applied initially to photosystem I, this novel method has important consequences for the future investigation of the assembly of biological molecules.

Original languageEnglish (US)
Article number014503
JournalJournal of Chemical Physics
Volume128
Issue number1
DOIs
StatePublished - 2008

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Investigation of water bound to photosystem i with multiquantum filtered O17 nuclear magnetic resonance'. Together they form a unique fingerprint.

Cite this