TY - CONF
T1 - Investigations of ship airwakes using concurrent computations and experiments
AU - Farish, David
AU - Seth, Dhuree
AU - Thedin, Regis
AU - Schmitz, Sven
N1 - Funding Information:
This research was partially funded by the University Graduate Fellowship (UGF) program at The Pennsylvania State University and funding from Embry-Riddle Aeronautical University, as well as by the Government under Agreement No. W911W6-17-2-0003. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation thereon. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Aviation
Publisher Copyright:
© 2020 by the Vertical Flight Society.
PY - 2020
Y1 - 2020
N2 - With modern advancements in computational resources, higher fidelity simulations of the ship-rotorcraft dynamic interface using large eddy simulations are now more feasible. Wind tunnel experiments remain one of the best validation tools for computational fluid dynamics simulations, but it is challenging to recreate full-scale ship and atmospheric conditions in such an environment. To serve as a bridge between scaled wind tunnel experiments and full-scale dynamic interface computations, Embry-Riddle Aeronautical University's Boundary-Layer Wind Tunnel was modeled in large eddy simulations to investigate the atmospheric boundary layer's effect on the airwake of a 1:235 scale Simple Frigate Shape 2 model. Cowdrey rods were used in the wind tunnel to develop the turbulence and momentum deficit characteristic of the atmospheric boundary layer. Hot-wire anemometry and Particle Image Velocimetry data were compared to OpenFOAM Large Eddy Simulation data. In uniform inflow conditions, it was found that despite the reduced Reynolds number of the scaled setup, the computational airwake data agreed quite well with larger-scale wind tunnel experiments and full-scale Large Eddy Simulations of the Simple Frigate Shape 2. Comparisons of the experimental and computational simulated atmospheric boundary-layer inflow show good agreement in the time-averaged velocity profile, velocity/turbulence intensity contours along the ship's centerline, and velocity probes on the flight deck of the model.
AB - With modern advancements in computational resources, higher fidelity simulations of the ship-rotorcraft dynamic interface using large eddy simulations are now more feasible. Wind tunnel experiments remain one of the best validation tools for computational fluid dynamics simulations, but it is challenging to recreate full-scale ship and atmospheric conditions in such an environment. To serve as a bridge between scaled wind tunnel experiments and full-scale dynamic interface computations, Embry-Riddle Aeronautical University's Boundary-Layer Wind Tunnel was modeled in large eddy simulations to investigate the atmospheric boundary layer's effect on the airwake of a 1:235 scale Simple Frigate Shape 2 model. Cowdrey rods were used in the wind tunnel to develop the turbulence and momentum deficit characteristic of the atmospheric boundary layer. Hot-wire anemometry and Particle Image Velocimetry data were compared to OpenFOAM Large Eddy Simulation data. In uniform inflow conditions, it was found that despite the reduced Reynolds number of the scaled setup, the computational airwake data agreed quite well with larger-scale wind tunnel experiments and full-scale Large Eddy Simulations of the Simple Frigate Shape 2. Comparisons of the experimental and computational simulated atmospheric boundary-layer inflow show good agreement in the time-averaged velocity profile, velocity/turbulence intensity contours along the ship's centerline, and velocity probes on the flight deck of the model.
UR - http://www.scopus.com/inward/record.url?scp=85096912041&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85096912041&partnerID=8YFLogxK
M3 - Paper
AN - SCOPUS:85096912041
T2 - Vertical Flight Society's 76th Annual Forum and Technology Display
Y2 - 5 October 2020 through 8 October 2020
ER -