TY - GEN
T1 - Iodine based compound semiconductors for room temperature gamma-ray spectroscopy
AU - Lintereur, Azaree T.
AU - Qiu, Wei
AU - Nino, Juan C.
AU - Baciak, James E.
PY - 2008
Y1 - 2008
N2 - Iodine-based compound semiconductors may allow one to build a portable gamma-ray spectrometer with improved efficiency and energy resolution compared to many other portable spectrometer devices. Iodine-based semiconductors have a wide band gap that allows these detectors to operate without any cooling mechanism. Bismuth iodide (BiI3), lead iodide (PbI2) and mercuric iodide (HgI2) have theoretical gamma-ray detection efficiencies approximately 2-3 times higher than CdZnTe, the current compound semiconductor material proposed for use in several homeland/national security applications, over the range of 200-3000 keV. At 662 keV, BiI3, HgI2 and PbI2 have theoretical intrinsic photopeak efficiencies of 16.8%, 19.3% and 19.9%, respectively, while CdZnTe has a photopeak efficiency of 9.03%. In addition, gamma-ray spectrometers made from iodine-based compound semiconductor materials have demonstrated energy resolutions (FWHM) less than 2% at 662 keV. A 2% FWHM represents a significant improvement over many of today's scintillator-based radiation detectors used for homeland/national security purposes. We present some fundamental challenges in working with iodine-based semiconductors, including crystal growth issues and properties of the materials limiting radiation detector size, and the need for advanced electrode designs. Finally, we present elementary measurements illustrating the detection capabilities of iodine-based compound semiconductor materials.
AB - Iodine-based compound semiconductors may allow one to build a portable gamma-ray spectrometer with improved efficiency and energy resolution compared to many other portable spectrometer devices. Iodine-based semiconductors have a wide band gap that allows these detectors to operate without any cooling mechanism. Bismuth iodide (BiI3), lead iodide (PbI2) and mercuric iodide (HgI2) have theoretical gamma-ray detection efficiencies approximately 2-3 times higher than CdZnTe, the current compound semiconductor material proposed for use in several homeland/national security applications, over the range of 200-3000 keV. At 662 keV, BiI3, HgI2 and PbI2 have theoretical intrinsic photopeak efficiencies of 16.8%, 19.3% and 19.9%, respectively, while CdZnTe has a photopeak efficiency of 9.03%. In addition, gamma-ray spectrometers made from iodine-based compound semiconductor materials have demonstrated energy resolutions (FWHM) less than 2% at 662 keV. A 2% FWHM represents a significant improvement over many of today's scintillator-based radiation detectors used for homeland/national security purposes. We present some fundamental challenges in working with iodine-based semiconductors, including crystal growth issues and properties of the materials limiting radiation detector size, and the need for advanced electrode designs. Finally, we present elementary measurements illustrating the detection capabilities of iodine-based compound semiconductor materials.
UR - http://www.scopus.com/inward/record.url?scp=45149134175&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=45149134175&partnerID=8YFLogxK
U2 - 10.1117/12.777402
DO - 10.1117/12.777402
M3 - Conference contribution
AN - SCOPUS:45149134175
SN - 9780819471369
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Optics and Photonics in Global Homeland Security IV
T2 - Optics and Photonics in Global Homeland Security IV
Y2 - 17 March 2008 through 20 March 2008
ER -