TY - JOUR
T1 - Ion atmosphere relaxation controlled electron transfers in cobaltocenium polyether molten salts
AU - Harper, Amanda S.
AU - Leone, Anthony M.
AU - Lee, Dongil
AU - Wang, Wei
AU - Ranganathan, Srikanth
AU - Williams, Mary Elizabeth
AU - Murray, Royce W.
PY - 2005/10/13
Y1 - 2005/10/13
N2 - A room-temperature redox molten salt for the study of electron transfers in semisolid media, based on combining bis(cyclopentadienyl)cobalt with oligomeric polyether counterions, [Cp 2Co](MePEG 350SO 3), is reported. The transport properties of the new molten salt can be varied (plasticized) by varying the polyether content. The charge transport rate during voltammetric reduction of the ionically conductive [Cp 2Co] (MePEG 350SO 3) molten salt exceeds the actual physical diffusivity of [Cp 2Co] + because of rapid [Cp 2Co] +/0 electron self-exchanges. The measured [Cp 2Co] +/0 electron self-exchange rate constants (k EX) are proportional to the diffusion coefficients (D CION) of the counterions in the melt. The electron-transfer activation barrier energies are also close to those of ionic diffusion but are larger than those derived from optical intervalent charge-transfer results. Additionally, the [Cp 2Co] +/0 rate constant results are close to those of dissimilar redox moieties in molten salts where DCION values are similar. All of these characteristics are consistent with the rates of electron transfers of [Cp 2Co] +/0 (and the other donor-acceptor pairs) being controlled not by the intrinsic electron-transfer rates but by the rate of relaxation of the ion atmosphere around the reacting pair. In the low driving force regime of mixed-valent concentration gradients, the ion atmosphere relaxation is competitive with electron transfer. The results support the generality of the recently proposed model of ionic atmosphere relaxation control of electron transfers in ionically conductive, semisolid materials.
AB - A room-temperature redox molten salt for the study of electron transfers in semisolid media, based on combining bis(cyclopentadienyl)cobalt with oligomeric polyether counterions, [Cp 2Co](MePEG 350SO 3), is reported. The transport properties of the new molten salt can be varied (plasticized) by varying the polyether content. The charge transport rate during voltammetric reduction of the ionically conductive [Cp 2Co] (MePEG 350SO 3) molten salt exceeds the actual physical diffusivity of [Cp 2Co] + because of rapid [Cp 2Co] +/0 electron self-exchanges. The measured [Cp 2Co] +/0 electron self-exchange rate constants (k EX) are proportional to the diffusion coefficients (D CION) of the counterions in the melt. The electron-transfer activation barrier energies are also close to those of ionic diffusion but are larger than those derived from optical intervalent charge-transfer results. Additionally, the [Cp 2Co] +/0 rate constant results are close to those of dissimilar redox moieties in molten salts where DCION values are similar. All of these characteristics are consistent with the rates of electron transfers of [Cp 2Co] +/0 (and the other donor-acceptor pairs) being controlled not by the intrinsic electron-transfer rates but by the rate of relaxation of the ion atmosphere around the reacting pair. In the low driving force regime of mixed-valent concentration gradients, the ion atmosphere relaxation is competitive with electron transfer. The results support the generality of the recently proposed model of ionic atmosphere relaxation control of electron transfers in ionically conductive, semisolid materials.
UR - http://www.scopus.com/inward/record.url?scp=27144517105&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=27144517105&partnerID=8YFLogxK
U2 - 10.1021/jp051380j
DO - 10.1021/jp051380j
M3 - Article
C2 - 16853426
AN - SCOPUS:27144517105
SN - 1520-6106
VL - 109
SP - 18852
EP - 18859
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
IS - 40
ER -