Abstract
Cell surface expression of the dopamine transporter (DAT) is determined by the relative rates of its internalization and recycling. Changes in the cellular labile iron pool (LIP) affect many cellular mechanisms including those that regulate DAT trafficking. In this study, we analyzed DAT expression and posttranslational modifications in response to changes in cellular iron in transfected neuroblastoma cells (N2a). Iron chelation by desferrioxamine (DFO) altered DAT protein levels by decreasing the stability of DAT mRNA. Increased phosphorylation and ubiquitination of this transporter protein following DFO treatment were also observed. Cellular iron depletion elevated protein levels of the early endosomal marker Rab5. Moreover, confocal microscopy studies showed increased localization of DAT into the endosomal compartment in DFO-treated cells compared to control. Together, these findings suggest that cellular iron depletion regulates DAT expression through reducing mRNA stability as well as an increasing in endocytosis.
Original language | English (US) |
---|---|
Pages (from-to) | 405-412 |
Number of pages | 8 |
Journal | Experimental Cell Research |
Volume | 317 |
Issue number | 4 |
DOIs | |
State | Published - Feb 15 2011 |
All Science Journal Classification (ASJC) codes
- Cell Biology