Irrigation-yield production functions and irrigation water use efficiency response of drought-tolerant and non-drought-tolerant maize hybrids under different irrigation levels, population densities, and environments

Suat Irmak, Ali T. Mohammed, William Kranz, C. D. Yonts, Simon van Donk

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Irrigation-yield production functions (IYPFs), irrigation water use efficiency (IWUE), and grain production per unit of applied irrigation of non-drought-tolerant (NDT) and drought-tolerant (DT) maize (Zea mays L.) hybrids were quantified in four locations with different climates in Nebraska [Concord (sub-humid), Clay Center (transition zone between sub-humid and semi-arid); North Platte (semi-arid); and, Scottsbluff (semi-arid)] during three growing seasons (2010, 2011, and 2012) at three irrigation levels (fully-irrigated treatment (FIT), early cut-off (ECOT), and rainfed (RFT) under two plant population densities (PPDs) (low-PPD; 59,300 plants ha-1; and, high-PPD, 84,000 plants ha-1). Overall, DT hybrids' performance was superior to NDT hybrid at RFT, ECT, and FIT conditions, as confirmed by the yield response, IYPF and IWUE when all locations, years, and PPDs were averaged. The yield response to water was greater with the high-PPD than the low-PPD in most cases. The magnitude of the highest yields for DT hybrids ranged from 7.3 (low-PPD) to 8.5% (high-PPD) under RFT, 3.7 (low-PPD) to 9.6% (high-PPD) under ECOT, and 3.9% (high-PPD) under FIT higher than NDT hybrid. Relatively, DT hybrids can resist drought-stress conditions longer than NDT hybrid with fewer penalties in yield reduction and maintain comparable or even higher yield production at non-stress-water conditions.

Original languageEnglish (US)
Article number358
JournalSustainability (Switzerland)
Volume12
Issue number1
DOIs
StatePublished - 2020

All Science Journal Classification (ASJC) codes

  • Computer Science (miscellaneous)
  • Environmental Science (miscellaneous)
  • Geography, Planning and Development
  • Energy Engineering and Power Technology
  • Hardware and Architecture
  • Management, Monitoring, Policy and Law
  • Computer Networks and Communications
  • Renewable Energy, Sustainability and the Environment

Fingerprint

Dive into the research topics of 'Irrigation-yield production functions and irrigation water use efficiency response of drought-tolerant and non-drought-tolerant maize hybrids under different irrigation levels, population densities, and environments'. Together they form a unique fingerprint.

Cite this