TY - JOUR
T1 - Is graphene a stable platform for photocatalysis? Mineralization of reduced graphene oxide with UV-irradiated TiO2 nanoparticles
AU - Radich, James G.
AU - Krenselewski, Anthony L.
AU - Zhu, Jiadong
AU - Kamat, Prashant V.
PY - 2014/8/12
Y1 - 2014/8/12
N2 - The recent thrust in utilizing reduced graphene oxide (RGO) as a support for nanostructured catalyst particles has led to the claims of improved efficiency in solar cells, fuel cells, and photocatalytic degradation of pollutants. Specifically, the robust TiO2 system is often coupled with RGO to improve charge separation and facilitate redox reactions. Here, we probe the stability of RGO in the presence of UV-excited TiO2 in aqueous media and establish its reactivity toward OḢ radicals, a primary oxidant generated at the TiO2 surface. By probing changes in absorption, morphology, and total organic carbon content (TOC), we conclusively demonstrate the vulnerability of RGO toward OḢ attack and raise the concern of its use in many applications where OḢ are likely to be formed. On the other hand, the OḢ radical-mediated mineralization could also enable new approaches in tackling environmental remediation of nanocarbons such as RGO, carbon nanotubes, and fullerenes.
AB - The recent thrust in utilizing reduced graphene oxide (RGO) as a support for nanostructured catalyst particles has led to the claims of improved efficiency in solar cells, fuel cells, and photocatalytic degradation of pollutants. Specifically, the robust TiO2 system is often coupled with RGO to improve charge separation and facilitate redox reactions. Here, we probe the stability of RGO in the presence of UV-excited TiO2 in aqueous media and establish its reactivity toward OḢ radicals, a primary oxidant generated at the TiO2 surface. By probing changes in absorption, morphology, and total organic carbon content (TOC), we conclusively demonstrate the vulnerability of RGO toward OḢ attack and raise the concern of its use in many applications where OḢ are likely to be formed. On the other hand, the OḢ radical-mediated mineralization could also enable new approaches in tackling environmental remediation of nanocarbons such as RGO, carbon nanotubes, and fullerenes.
UR - https://www.scopus.com/pages/publications/84905985163
UR - https://www.scopus.com/inward/citedby.url?scp=84905985163&partnerID=8YFLogxK
U2 - 10.1021/cm5026552
DO - 10.1021/cm5026552
M3 - Article
AN - SCOPUS:84905985163
SN - 0897-4756
VL - 26
SP - 4662
EP - 4668
JO - Chemistry of Materials
JF - Chemistry of Materials
IS - 15
ER -