Isolation of the exoelectrogenic denitrifying bacterium Comamonas denitrificans based on dilution to extinction

Defeng Xing, Shaoan Cheng, Bruce E. Logan, John M. Regan

Research output: Contribution to journalArticlepeer-review

181 Scopus citations

Abstract

The anode biofilm in a microbial fuel cell (MFC) is composed of diverse populations of bacteria, many of whose capacities for electricity generation are unknown. To identify functional populations in these exoelectrogenic communities, a culture-dependent approach based on dilution to extinction was combined with culture-independent community analysis. We analyzed the diversity and dynamics of microbial communities in single-chamber air-cathode MFCs with different anode surfaces using denaturing gradient gel electrophoresis based on the 16S rRNA gene. Phylogenetic analyses showed that the bacteria enriched in all reactors belonged primarily to five phylogenetic groups: Firmicutes, Actinobacteria, α-Proteobacteria, β-Proteobacteria, and γ-Proteobacteria. Dilution-to-extinction experiments further demonstrated that Comamonas denitrificans and Clostridium aminobutyricum were dominant members of the community. A pure culture isolated from an anode biofilm after dilution to extinction was identified as C. denitrificans DX-4 based on 16S rRNA sequence and physiological and biochemical characterizations. Strain DX-4 was unable to respire using hydrous Fe(III) oxide but produced 35 mW/m2 using acetate as the electron donor in an MFC. Power generation by the facultative C. denitrificans depends on oxygen and MFC configuration, suggesting that a switch of metabolic pathway occurs for extracellular electron transfer by this denitrifying bacterium.

Original languageEnglish (US)
Pages (from-to)1575-1587
Number of pages13
JournalApplied Microbiology and Biotechnology
Volume85
Issue number5
DOIs
StatePublished - Feb 2010

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Applied Microbiology and Biotechnology

Fingerprint

Dive into the research topics of 'Isolation of the exoelectrogenic denitrifying bacterium Comamonas denitrificans based on dilution to extinction'. Together they form a unique fingerprint.

Cite this