Iterates of Borel functions

A. Alikhani-Koopaei, T. H. Steele

Research output: Contribution to journalArticlepeer-review

Abstract

Let B(α) be the set of bounded Borel-α self-maps of I=[0,1], where α is some countable ordinal. For f:I→I, let ω(x,f) be the ω-limit set generated by x∈I, and take CR(f) to be the set of chain recurrent points of f. There exists T a residual subset of B(α) such that for any f∈T, the following hold: 1. The n-fold iterate fn is an element of B(α), for all natural numbers n. 2. For any x∈I, the ω-limit set ω(x,f) is a Cantor set. 3. For any ε>0, there exists a natural number M such that fm(I)⊂Bε(CR(f)), whenever m>M. 4. The Hausdorff dimension dimH⁡CR(f)‾=0. 5. There exists R, a residual subset of [0,1], with the property that ωf:R→K given by x⟼ω(x,f) is continuous. 6. The function f is non-chaotic in the senses of Devaney and Li-Yorke.

Original languageEnglish (US)
Article number108237
JournalTopology and its Applications
Volume320
DOIs
StatePublished - Oct 1 2022

All Science Journal Classification (ASJC) codes

  • Geometry and Topology

Fingerprint

Dive into the research topics of 'Iterates of Borel functions'. Together they form a unique fingerprint.

Cite this