TY - JOUR
T1 - Iterates of Borel functions
AU - Alikhani-Koopaei, A.
AU - Steele, T. H.
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2022/10/1
Y1 - 2022/10/1
N2 - Let B(α) be the set of bounded Borel-α self-maps of I=[0,1], where α is some countable ordinal. For f:I→I, let ω(x,f) be the ω-limit set generated by x∈I, and take CR(f) to be the set of chain recurrent points of f. There exists T a residual subset of B(α) such that for any f∈T, the following hold: 1. The n-fold iterate fn is an element of B(α), for all natural numbers n. 2. For any x∈I, the ω-limit set ω(x,f) is a Cantor set. 3. For any ε>0, there exists a natural number M such that fm(I)⊂Bε(CR(f)), whenever m>M. 4. The Hausdorff dimension dimHCR(f)‾=0. 5. There exists R, a residual subset of [0,1], with the property that ωf:R→K given by x⟼ω(x,f) is continuous. 6. The function f is non-chaotic in the senses of Devaney and Li-Yorke.
AB - Let B(α) be the set of bounded Borel-α self-maps of I=[0,1], where α is some countable ordinal. For f:I→I, let ω(x,f) be the ω-limit set generated by x∈I, and take CR(f) to be the set of chain recurrent points of f. There exists T a residual subset of B(α) such that for any f∈T, the following hold: 1. The n-fold iterate fn is an element of B(α), for all natural numbers n. 2. For any x∈I, the ω-limit set ω(x,f) is a Cantor set. 3. For any ε>0, there exists a natural number M such that fm(I)⊂Bε(CR(f)), whenever m>M. 4. The Hausdorff dimension dimHCR(f)‾=0. 5. There exists R, a residual subset of [0,1], with the property that ωf:R→K given by x⟼ω(x,f) is continuous. 6. The function f is non-chaotic in the senses of Devaney and Li-Yorke.
UR - http://www.scopus.com/inward/record.url?scp=85137735669&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85137735669&partnerID=8YFLogxK
U2 - 10.1016/j.topol.2022.108237
DO - 10.1016/j.topol.2022.108237
M3 - Article
AN - SCOPUS:85137735669
SN - 0166-8641
VL - 320
JO - Topology and its Applications
JF - Topology and its Applications
M1 - 108237
ER -