TY - JOUR
T1 - ITGB5 and AGFG1 variants are associated with severity of airway responsiveness
AU - Himes, Blanca E.
AU - Qiu, Weiliang
AU - Klanderman, Barbara
AU - Ziniti, John
AU - Senter-Sylvia, Jody
AU - Szefler, Stanley J.
AU - Lemanske, Robert F.
AU - Zeiger, Robert S.
AU - Strunk, Robert C.
AU - Martinez, Fernando D.
AU - Boushey, Homer
AU - Chinchilli, Vernon M.
AU - Israel, Elliot
AU - Mauger, David
AU - Koppelman, Gerard H.
AU - Nieuwenhuis, Maartje A.E.
AU - Postma, Dirkje S.
AU - Vonk, Judith M.
AU - Rafaels, Nicholas
AU - Hansel, Nadia N.
AU - Barnes, Kathleen
AU - Raby, Benjamin
AU - Tantisira, Kelan G.
AU - Weiss, Scott T.
N1 - Funding Information:
We thank all CAMP subjects for their ongoing participation in this study. We acknowledge the CAMP investigators and research team, supported by the National Heart, Lung and Blood Institute (NHLBI), for collection of CAMP Genetic Ancillary Study data. All work on data collected from the CAMP Genetic Ancillary Study was conducted at the Channing Laboratory of the Brigham and Women’s Hospital under appropriate CAMP policies and human subject’s protections. The CAMP Genetics Ancillary Study is supported by U01 HL075419, U01 HL65899, P01 HL083069, R01 HL086601, and T32 HL07427 from the NHLBI, National Institutes of Health (NIH). Additional support was provided by NIH U10 HL064287, U10 HL064288, U10 HL064295, U10 HL064305, U10 HL064307, U01 HL064313, RC2 HL101487, and U01 HL65899, an NIH Pharmacogenomics Research Network (PGRN) – RIKEN Center for Genomic Medicine (CGM) Global Alliance. BEH was supported by NIH K99 HL105663. DAG was supported by the Netherlands Asthma Foundation grant AF (AF 95.09, AF 98.48, AF 3.2.02.51 and AF 3.2.07.015) and a grant from the University Medical Center Groningen. GHK was supported by a Ter Meulen Fund grant from the Royal Netherlands Academy of Arts and Sciences. The Lung Health Study I was supported by contract NIH/N01-HR-46002 and genotyping of its subjects was supported by GENEVA (U01HG004738). KCB was supported in part by the Mary Beryl Patch Turnbull Scholar Program.
PY - 2013/8/28
Y1 - 2013/8/28
N2 - Background: Airway hyperresponsiveness (AHR), a primary characteristic of asthma, involves increased airway smooth muscle contractility in response to certain exposures. We sought to determine whether common genetic variants were associated with AHR severity.Methods: A genome-wide association study (GWAS) of AHR, quantified as the natural log of the dosage of methacholine causing a 20% drop in FEV1, was performed with 994 non-Hispanic white asthmatic subjects from three drug clinical trials: CAMP, CARE, and ACRN. Genotyping was performed on Affymetrix 6.0 arrays, and imputed data based on HapMap Phase 2, was used to measure the association of SNPs with AHR using a linear regression model. Replication of primary findings was attempted in 650 white subjects from DAG, and 3,354 white subjects from LHS. Evidence that the top SNPs were eQTL of their respective genes was sought using expression data available for 419 white CAMP subjects.Results: The top primary GWAS associations were in rs848788 (P-value 7.2E-07) and rs6731443 (P-value 2.5E-06), located within the ITGB5 and AGFG1 genes, respectively. The AGFG1 result replicated at a nominally significant level in one independent population (LHS P-value 0.012), and the SNP had a nominally significant unadjusted P-value (0.0067) for being an eQTL of AGFG1.Conclusions: Based on current knowledge of ITGB5 and AGFG1, our results suggest that variants within these genes may be involved in modulating AHR. Future functional studies are required to confirm that our associations represent true biologically significant findings.
AB - Background: Airway hyperresponsiveness (AHR), a primary characteristic of asthma, involves increased airway smooth muscle contractility in response to certain exposures. We sought to determine whether common genetic variants were associated with AHR severity.Methods: A genome-wide association study (GWAS) of AHR, quantified as the natural log of the dosage of methacholine causing a 20% drop in FEV1, was performed with 994 non-Hispanic white asthmatic subjects from three drug clinical trials: CAMP, CARE, and ACRN. Genotyping was performed on Affymetrix 6.0 arrays, and imputed data based on HapMap Phase 2, was used to measure the association of SNPs with AHR using a linear regression model. Replication of primary findings was attempted in 650 white subjects from DAG, and 3,354 white subjects from LHS. Evidence that the top SNPs were eQTL of their respective genes was sought using expression data available for 419 white CAMP subjects.Results: The top primary GWAS associations were in rs848788 (P-value 7.2E-07) and rs6731443 (P-value 2.5E-06), located within the ITGB5 and AGFG1 genes, respectively. The AGFG1 result replicated at a nominally significant level in one independent population (LHS P-value 0.012), and the SNP had a nominally significant unadjusted P-value (0.0067) for being an eQTL of AGFG1.Conclusions: Based on current knowledge of ITGB5 and AGFG1, our results suggest that variants within these genes may be involved in modulating AHR. Future functional studies are required to confirm that our associations represent true biologically significant findings.
UR - http://www.scopus.com/inward/record.url?scp=84883116782&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84883116782&partnerID=8YFLogxK
U2 - 10.1186/1471-2350-14-86
DO - 10.1186/1471-2350-14-86
M3 - Article
C2 - 23984888
AN - SCOPUS:84883116782
SN - 1471-2350
VL - 14
JO - BMC Medical Genetics
JF - BMC Medical Genetics
IS - 1
M1 - 86
ER -