JNet: Learning user representations via joint network embedding and topic embedding

Lin Gong, Lu Lin, Weihao Song, Hongning Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

15 Scopus citations

Abstract

User representation learning is vital to capture diverse user preferences, while it is also challenging as user intents are latent and scattered among complex and different modalities of user-generated data, thus, not directly measurable. Inspired by the concept of user schema in social psychology, we take a new perspective to perform user representation learning by constructing a shared latent space to capture the dependency among different modalities of user-generated data. Both users and topics are embedded to the same space to encode users’ social connections and text content, to facilitate joint modeling of different modalities, via a probabilistic generative framework. We evaluated the proposed solution on large collections of Yelp reviews and StackOverflow discussion posts, with their associated network structures. The proposed model outperformed several state-of-the-art topic modeling based user models with better predictive power in unseen documents, and state-of-the-art network embedding based user models with improved link prediction quality in unseen nodes. The learnt user representations are also proved to be useful in content recommendation, e.g., expert finding in StackOverflow.

Original languageEnglish (US)
Title of host publicationWSDM 2020 - Proceedings of the 13th International Conference on Web Search and Data Mining
PublisherAssociation for Computing Machinery, Inc
Pages205-213
Number of pages9
ISBN (Electronic)9781450368223
DOIs
StatePublished - Jan 20 2020
Event13th ACM International Conference on Web Search and Data Mining, WSDM 2020 - Houston, United States
Duration: Feb 3 2020Feb 7 2020

Publication series

NameWSDM 2020 - Proceedings of the 13th International Conference on Web Search and Data Mining

Conference

Conference13th ACM International Conference on Web Search and Data Mining, WSDM 2020
Country/TerritoryUnited States
CityHouston
Period2/3/202/7/20

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Software
  • Computer Science Applications

Cite this