TY - GEN
T1 - Joint modeling of local and global temporal dynamics for multivariate time series forecasting with missing values
AU - Tang, Xianfeng
AU - Yao, Huaxiu
AU - Sun, Yiwei
AU - Aggarwal, Charu
AU - Mitra, Prasenjit
AU - Wang, Suhang
N1 - Publisher Copyright:
© 2020, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2020
Y1 - 2020
N2 - Multivariate time series (MTS) forecasting is widely used in various domains, such as meteorology and traffic. Due to limitations on data collection, transmission, and storage, real-world MTS data usually contains missing values, making it infeasible to apply existing MTS forecasting models such as linear regression and recurrent neural networks. Though many efforts have been devoted to this problem, most of them solely rely on local dependencies for imputing missing values, which ignores global temporal dynamics. Local dependencies/patterns would become less useful when the missing ratio is high, or the data have consecutive missing values; while exploring global patterns can alleviate such problem. Thus, jointly modeling local and global temporal dynamics is very promising for MTS forecasting with missing values. However, work in this direction is rather limited. Therefore, we study a novel problem of MTS forecasting with missing values by jointly exploring local and global temporal dynamics. We propose a new framework LGnet, which leverages memory network to explore global patterns given estimations from local perspectives. We further introduce adversarial training to enhance the modeling of global temporal distribution. Experimental results on real-world datasets show the effectiveness of LGnet for MTS forecasting with missing values and its robustness under various missing ratios.
AB - Multivariate time series (MTS) forecasting is widely used in various domains, such as meteorology and traffic. Due to limitations on data collection, transmission, and storage, real-world MTS data usually contains missing values, making it infeasible to apply existing MTS forecasting models such as linear regression and recurrent neural networks. Though many efforts have been devoted to this problem, most of them solely rely on local dependencies for imputing missing values, which ignores global temporal dynamics. Local dependencies/patterns would become less useful when the missing ratio is high, or the data have consecutive missing values; while exploring global patterns can alleviate such problem. Thus, jointly modeling local and global temporal dynamics is very promising for MTS forecasting with missing values. However, work in this direction is rather limited. Therefore, we study a novel problem of MTS forecasting with missing values by jointly exploring local and global temporal dynamics. We propose a new framework LGnet, which leverages memory network to explore global patterns given estimations from local perspectives. We further introduce adversarial training to enhance the modeling of global temporal distribution. Experimental results on real-world datasets show the effectiveness of LGnet for MTS forecasting with missing values and its robustness under various missing ratios.
UR - http://www.scopus.com/inward/record.url?scp=85106601624&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85106601624&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85106601624
T3 - AAAI 2020 - 34th AAAI Conference on Artificial Intelligence
SP - 5956
EP - 5963
BT - AAAI 2020 - 34th AAAI Conference on Artificial Intelligence
PB - AAAI press
T2 - 34th AAAI Conference on Artificial Intelligence, AAAI 2020
Y2 - 7 February 2020 through 12 February 2020
ER -