TY - JOUR
T1 - KCNE1 and KCNE3 β-subunits regulate membrane surface expression of Kv12.2 K+ channels in vitro and form a tripartite complex in vivo
AU - Clancy, Sinead M.
AU - Chen, Bihan
AU - Bertaso, Federica
AU - Mamet, Julien
AU - Jegla, Timothy
PY - 2009/7/22
Y1 - 2009/7/22
N2 - Voltage-gated potassium channels that activate near the neuronal resting membrane potential are important regulators of excitation in the nervous system, but their functional diversity is still not well understood. For instance, Kv12.2 (ELK2, KCNH3) channels are highly expressed in the cerebral cortex and hippocampus, and although they are most likely to contribute to resting potassium conductance, surprisingly little is known about their function or regulation. Here we demonstrate that the auxiliary MinK (KCNE1) and MiRP2 (KCNE3) proteins are important regulators of Kv12.2 channel function. Reduction of endogenous KCNE1 or KCNE3 expression by siRNA silencing, significantly increased macroscopic Kv12.2 currents in Xenopus oocytes by around 4-fold. Interestingly, an almost 9-fold increase in Kv12.2 currents was observed with the dual injection of KCNE1 and KCNE3 siRNA, suggesting an additive effect. Consistent with these findings, over-expression of KCNE1 and/or KCNE3 suppressed Kv12.2 currents. Membrane surface biotinylation assays showed that surface expression of Kv12.2 was significantly increased by KCNE1 and KCNE3 siRNA, whereas total protein expression of Kv12.2 was not affected. KCNE1 and KCNE3 siRNA shifted the voltages for half-maximal activation to more hyperpolarized voltages, indicating that KCNE1 and KCNE3 may also inhibit activation gating of Kv12.2. Native co-immunoprecipitation assays from mouse brain membranes imply that KCNE1 and KCNE3 interact with Kv12.2 simultaneously in vivo, suggesting the existence of novel KCNE1-KCNE3-Kv12.2 channel tripartite complexes. Together these data indicate that KCNE1 and KCNE3 interact directly with Kv12.2 channels to regulate channel membrane trafficking.
AB - Voltage-gated potassium channels that activate near the neuronal resting membrane potential are important regulators of excitation in the nervous system, but their functional diversity is still not well understood. For instance, Kv12.2 (ELK2, KCNH3) channels are highly expressed in the cerebral cortex and hippocampus, and although they are most likely to contribute to resting potassium conductance, surprisingly little is known about their function or regulation. Here we demonstrate that the auxiliary MinK (KCNE1) and MiRP2 (KCNE3) proteins are important regulators of Kv12.2 channel function. Reduction of endogenous KCNE1 or KCNE3 expression by siRNA silencing, significantly increased macroscopic Kv12.2 currents in Xenopus oocytes by around 4-fold. Interestingly, an almost 9-fold increase in Kv12.2 currents was observed with the dual injection of KCNE1 and KCNE3 siRNA, suggesting an additive effect. Consistent with these findings, over-expression of KCNE1 and/or KCNE3 suppressed Kv12.2 currents. Membrane surface biotinylation assays showed that surface expression of Kv12.2 was significantly increased by KCNE1 and KCNE3 siRNA, whereas total protein expression of Kv12.2 was not affected. KCNE1 and KCNE3 siRNA shifted the voltages for half-maximal activation to more hyperpolarized voltages, indicating that KCNE1 and KCNE3 may also inhibit activation gating of Kv12.2. Native co-immunoprecipitation assays from mouse brain membranes imply that KCNE1 and KCNE3 interact with Kv12.2 simultaneously in vivo, suggesting the existence of novel KCNE1-KCNE3-Kv12.2 channel tripartite complexes. Together these data indicate that KCNE1 and KCNE3 interact directly with Kv12.2 channels to regulate channel membrane trafficking.
UR - http://www.scopus.com/inward/record.url?scp=67749148989&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67749148989&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0006330
DO - 10.1371/journal.pone.0006330
M3 - Article
C2 - 19623261
AN - SCOPUS:67749148989
SN - 1932-6203
VL - 4
JO - PloS one
JF - PloS one
IS - 7
M1 - e6330
ER -