Abstract
We probe the high-ionization circumgalactic medium by examining absorber kinematics, absorber-galaxy kinematics, and average absorption profiles of 31 O vi absorbers from the "Multiphase Galaxy Halos" Survey as a function of halo mass, redshift, inclination, and azimuthal angle. The galaxies are isolated at 0.12 < z gal < 0.66 and are probed by a background quasar within D ≈ 200 kpc. Each absorber-galaxy pair has Hubble Space Telescope images and COS quasar spectra, and most galaxy redshifts have been accurately measured from Keck/ESI spectra. Using the pixel-velocity two-point correlation function (TPCF) method, we find that O vi absorber kinematics have a strong halo mass dependence. Absorbers hosted by ∼L∗ galaxies have the largest velocity dispersions, which we interpret to be that the halo virial temperature closely matches the temperature at which the collisionally ionized O vi fraction peaks. Lower-mass galaxies and group environments have smaller velocity dispersions. Total column densities follow the same behavior, consistent with theoretical findings. After normalizing out the observed mass dependence, we studied absorber-galaxy kinematics with a modified TPCF and found nonvirialized motions due to outflowing gas. Edge-on minor-Axis gas has large optical depths concentrated near the galaxy systemic velocity as expected for bipolar outflows, while face-on minor-Axis gas has a smoothly decreasing optical depth distribution out to large normalized absorber-galaxy velocities, suggestive of decelerating outflowing gas. Accreting gas signatures are not observed owing to "kinematic blurring," in which multiple line-of-sight structures are observed. These results indicate that galaxy mass dominates O vi properties over baryon cycle processes.
Original language | English (US) |
---|---|
Article number | 66 |
Journal | Astrophysical Journal |
Volume | 886 |
Issue number | 1 |
DOIs | |
State | Published - Nov 20 2019 |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Kinematics of the O vi circumgalactic medium: Halo mass dependence and outflow signatures'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Astrophysical Journal, Vol. 886, No. 1, 66, 20.11.2019.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Kinematics of the O vi circumgalactic medium
T2 - Halo mass dependence and outflow signatures
AU - Ng, Mason
AU - Nielsen, Nikole M.
AU - Kacprzak, Glenn G.
AU - Pointon, Stephanie K.
AU - Muzahid, Sowgat
AU - Churchill, Christopher W.
AU - Charlton, Jane C.
N1 - Funding Information: Mason Ng Nikole M. Nielsen Glenn G. Kacprzak Stephanie K. Pointon Sowgat Muzahid Christopher W. Churchill Jane C. Charlton Mason Ng Nikole M. Nielsen Glenn G. Kacprzak Stephanie K. Pointon Sowgat Muzahid Christopher W. Churchill Jane C. Charlton Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia Research School of Astronomy and Astrophysics, Australian National University, ACT 2611, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia Department of Astronomy & Astrophysics, The Pennsylvania State University, State College, PA 16801, USA Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden, The Netherlands Department of Astronomy, New Mexico State University, Las Cruces, NM 88003, USA Mason Ng, Nikole M. Nielsen, Glenn G. Kacprzak, Stephanie K. Pointon, Sowgat Muzahid, Christopher W. Churchill and Jane C. Charlton 2019-11-20 2019-11-20 13:43:53 cgi/release: Article released bin/incoming: New from .zip Australian Research Council DP170103470 Australian Research Council CE170100012 European Research Council 278594-GasAroundGalaxies National Science Foundation 1517831 National Science Foundation AST-1312686 yes We probe the high-ionization circumgalactic medium by examining absorber kinematics, absorber–galaxy kinematics, and average absorption profiles of 31 O vi absorbers from the “Multiphase Galaxy Halos” Survey as a function of halo mass, redshift, inclination, and azimuthal angle. The galaxies are isolated at 0.12�<� z gal �<�0.66 and are probed by a background quasar within D �≈�200 kpc. Each absorber–galaxy pair has Hubble Space Telescope images and COS quasar spectra, and most galaxy redshifts have been accurately measured from Keck/ESI spectra. Using the pixel-velocity two-point correlation function (TPCF) method, we find that O vi absorber kinematics have a strong halo mass dependence. Absorbers hosted by ∼ L * galaxies have the largest velocity dispersions, which we interpret to be that the halo virial temperature closely matches the temperature at which the collisionally ionized O vi fraction peaks. Lower-mass galaxies and group environments have smaller velocity dispersions. Total column densities follow the same behavior, consistent with theoretical findings. After normalizing out the observed mass dependence, we studied absorber–galaxy kinematics with a modified TPCF and found nonvirialized motions due to outflowing gas. Edge-on minor-axis gas has large optical depths concentrated near the galaxy systemic velocity as expected for bipolar outflows, while face-on minor-axis gas has a smoothly decreasing optical depth distribution out to large normalized absorber–galaxy velocities, suggestive of decelerating outflowing gas. Accreting gas signatures are not observed owing to “kinematic blurring,” in which multiple line-of-sight structures are observed. These results indicate that galaxy mass dominates O vi properties over baryon cycle processes. � 2019. The American Astronomical Society. All rights reserved. Alonso S., Mesa V., Padilla N. and Lambas D. G. 2012 A&A 539 A46 10.1051/0004-6361/201117901 Alonso S., Mesa V., Padilla N. and Lambas D. G. A&A 0004-6361 539 2012 A46 Bielby R. M., Stott J. P., Cullen F. et al 2019 MNRAS 486 21 10.1093/mnras/stz774 Bielby R. M., Stott J. P., Cullen F. et al MNRAS 0035-8711 486 2019 21 Bordoloi R., Lilly S. J., Hardmeier E. et al 2014 ApJ 794 130 10.1088/0004-637X/794/2/130 Bordoloi R., Lilly S. J., Hardmeier E. et al ApJ 0004-637X 794 2 130 2014 130 Bordoloi R., Lilly S. J., Knobel C. et al 2011 ApJ 743 10 10.1088/0004-637X/743/1/10 Bordoloi R., Lilly S. J., Knobel C. et al ApJ 0004-637X 743 1 10 2011 10 Bouché N., Hohensee W., Vargas R. et al 2012 MNRAS 426 801 10.1111/j.1365-2966.2012.21114.x Bouché N., Hohensee W., Vargas R. et al MNRAS 0035-8711 426 2012 801 Bouché N., Murphy M. T., Kacprzak G. G. et al 2013 Sci 341 50 10.1126/science.1234209 Bouché N., Murphy M. T., Kacprzak G. G. et al Sci 341 2013 50 Bryan G. L. and Norman M. L. 1998 ApJ 495 80 10.1086/305262 Bryan G. L. and Norman M. L. ApJ 0004-637X 495 1 80 1998 80 Butler M. J., Tan J. C., Teyssier R. et al 2017 ApJ 841 82 10.3847/1538-4357/aa7054 Butler M. J., Tan J. C., Teyssier R. et al ApJ 0004-637X 841 2 82 2017 82 Carswell R. F. and Webb J. K. 2014 VPFIT: Voigt Profile Fitting Program, Astrophysics Source Code Library ascl:1408.015 Carswell R. F. and Webb J. K. VPFIT: Voigt Profile Fitting Program, Astrophysics Source Code Library 2014 Chen H.-W., Lanzetta K. M. and Webb J. K. 2001 ApJ 556 158 10.1086/321537 Chen H.-W., Lanzetta K. M. and Webb J. K. ApJ 0004-637X 556 1 158 2001 158 Churchill C. W., Mellon R. R., Charlton J. C. et al 2000 ApJS 130 91 10.1086/317343 Churchill C. W., Mellon R. R., Charlton J. C. et al ApJS 0067-0049 130 1 91 2000 91 Churchill C. W., Trujillo-Gomez S., Nielsen N. M. and Kacprzak G. G. 2013 ApJ 779 87 10.1088/0004-637X/779/1/87 Churchill C. W., Trujillo-Gomez S., Nielsen N. M. and Kacprzak G. G. ApJ 0004-637X 779 1 87 2013 87 Churchill C. W., Vander Vliet J. R., Trujillo-Gomez S., Kacprzak G. G. and Klypin A. 2015 ApJ 802 10 10.1088/0004-637X/802/1/10 Churchill C. W., Vander Vliet J. R., Trujillo-Gomez S., Kacprzak G. G. and Klypin A. ApJ 0004-637X 802 1 10 2015 10 Cole S., Lacey C. G., Baugh C. M. and Frenk C. S. 2000 MNRAS 319 168 10.1046/j.1365-8711.2000.03879.x Cole S., Lacey C. G., Baugh C. M. and Frenk C. S. MNRAS 0035-8711 319 2000 168 Cooper T. J., Simcoe R. A., Cooksey K. L., O’Meara J. M. and Torrey P. 2015 ApJ 812 58 10.1088/0004-637X/812/1/58 Cooper T. J., Simcoe R. A., Cooksey K. L., O’Meara J. M. and Torrey P. ApJ 0004-637X 812 1 58 2015 58 Correa C. A., Schaye J., van de Voort F., Duffy A. R. and Wyithe J. S. B. 2018 MNRAS 478 255 10.1093/mnras/sty871 Correa C. A., Schaye J., van de Voort F., Duffy A. R. and Wyithe J. S. B. MNRAS 0035-8711 478 2018 255 Cox T. J., Jonsson P., Somerville R. S., Primack J. R. and Dekel A. 2008 MNRAS 384 386 10.1111/j.1365-2966.2007.12730.x Cox T. J., Jonsson P., Somerville R. S., Primack J. R. and Dekel A. MNRAS 0035-8711 384 2008 386 da Costa-Luis C. L., Mary S., H. et al 2018 tqdm/tqdm: tqdm v4.23.4 Stable Zenodo, doi:10.5281/zenodo.1251290 da Costa-Luis C. L., Mary S., H. et al tqdm/tqdm: tqdm v4.23.4 Stable 2018 Danovich M., Dekel A., Hahn O., Ceverino D. and Primack J. 2015 MNRAS 449 2087 10.1093/mnras/stv270 Danovich M., Dekel A., Hahn O., Ceverino D. and Primack J. MNRAS 0035-8711 449 2015 2087 Danovich M., Dekel A., Hahn O. and Teyssier R. 2012 MNRAS 422 1732 10.1111/j.1365-2966.2012.20751.x Danovich M., Dekel A., Hahn O. and Teyssier R. MNRAS 0035-8711 422 2012 1732 Fernández M., Yuan F., Shen S. et al 2015 Galax 3 156 10.3390/galaxies3040156 Fernández M., Yuan F., Shen S. et al Galax 0350-6231 3 2015 156 Feulner G., Gabasch A., Salvato M. et al 2005 ApJ 633 L9 10.1086/498109 Feulner G., Gabasch A., Salvato M. et al ApJ 1538-4357 633 1 L9 2005 L9 Ford A. B., Davé R., Oppenheimer B. D. et al 2014 MNRAS 444 1260 10.1093/mnras/stu1418 Ford A. B., Davé R., Oppenheimer B. D. et al MNRAS 0035-8711 444 2014 1260 Glidden A., Cooper T. J., Cooksey K. L., Simcoe R. A. and O’Meara J. M. 2016 ApJ 833 270 10.3847/1538-4357/833/2/270 Glidden A., Cooper T. J., Cooksey K. L., Simcoe R. A. and O’Meara J. M. ApJ 0004-637X 833 2 270 2016 270 Gómez-Guijarro C., Toft S., Karim A. et al 2018 ApJ 856 121 10.3847/1538-4357/aab206 Gómez-Guijarro C., Toft S., Karim A. et al ApJ 0004-637X 856 2 121 2018 121 Guillemin P. and Bergeron J. 1997 A&A 328 499 Guillemin P. and Bergeron J. A&A 0004-6361 328 1997 499 Ho S. H., Martin C. L., Kacprzak G. G. and Churchill C. W. 2017 ApJ 835 267 10.3847/1538-4357/835/2/267 Ho S. H., Martin C. L., Kacprzak G. G. and Churchill C. W. ApJ 0004-637X 835 2 267 2017 267 Hunter J. D. 2007 CSE 9 90 10.1109/MCSE.2007.55 Hunter J. D. CSE 1070-8413 9 2007 90 Hussain T., Muzahid S., Narayanan A. et al 2015 MNRAS 446 2444 10.1093/mnras/stu2285 Hussain T., Muzahid S., Narayanan A. et al MNRAS 0035-8711 446 2015 2444 Johnson S. D., Chen H.-W. and Mulchaey J. S. 2013 MNRAS 434 1765 10.1093/mnras/stt1137 Johnson S. D., Chen H.-W. and Mulchaey J. S. MNRAS 0035-8711 434 2013 1765 Johnson S. D., Chen H.-W. and Mulchaey J. S. 2015 MNRAS 449 3263 10.1093/mnras/stv553 Johnson S. D., Chen H.-W. and Mulchaey J. S. MNRAS 0035-8711 449 2015 3263 Kacprzak G. G. 2017 Gas Accretion onto Galaxies ed A. Fox and R. Davé (Cham: Springer) 145 10.1007/978-3-319-52512-9_7 Kacprzak G. G. ed Fox A. and Davé R. Gas Accretion onto Galaxies 0067-0057 430 2017 145 Kacprzak G. G., Churchill C. W., Barton E. J. and Cooke J. 2011 ApJ 733 105 10.1088/0004-637X/733/2/105 Kacprzak G. G., Churchill C. W., Barton E. J. and Cooke J. ApJ 0004-637X 733 2 105 2011 105 Kacprzak G. G., Churchill C. W., Ceverino D. et al 2010 ApJ 711 533 10.1088/0004-637X/711/2/533 Kacprzak G. G., Churchill C. W., Ceverino D. et al ApJ 0004-637X 711 2 533 2010 533 Kacprzak G. G., Churchill C. W., Steidel C. C., Spitler L. R. and Holtzman J. A. 2012 MNRAS 427 3029 10.1111/j.1365-2966.2012.21945.x Kacprzak G. G., Churchill C. W., Steidel C. C., Spitler L. R. and Holtzman J. A. MNRAS 0035-8711 427 2012 3029 Kacprzak G. G., Muzahid S., Churchill C. W., Nielsen N. M. and Charlton J. C. 2015 ApJ 815 22 10.1088/0004-637X/815/1/22 Kacprzak G. G., Muzahid S., Churchill C. W., Nielsen N. M. and Charlton J. C. ApJ 0004-637X 815 1 22 2015 22 Kacprzak G. G., Vander Vliet J. R., Nielsen N. M. et al 2019 ApJ 870 137 10.3847/1538-4357/aaf1a6 Kacprzak G. G., Vander Vliet J. R., Nielsen N. M. et al ApJ 0004-637X 870 2 137 2019 137 Kaviraj S. 2014 MNRAS 440 2944 10.1093/mnras/stu338 Kaviraj S. MNRAS 0035-8711 440 2014 2944 Klypin A. A., Trujillo-Gomez S. and Primack J. 2011 ApJ 740 102 10.1088/0004-637X/740/2/102 Klypin A. A., Trujillo-Gomez S. and Primack J. ApJ 0004-637X 740 2 102 2011 102 Lam S. K., Pitrou A. and Seibert S. 2015 Proc. Second Workshop on the LLVM Compiler Infrastructure in HPC, LLVM ’15 (New York: ACM) 7 10.1145/2833157.2833162 Lam S. K., Pitrou A. and Seibert S. Proc. Second Workshop on the LLVM Compiler Infrastructure in HPC, LLVM ’15 2015 7 Lambas D. G., Alonso S., Mesa V. and O’Mill A. L. 2012 A&A 539 A45 10.1051/0004-6361/201117900 Lambas D. G., Alonso S., Mesa V. and O’Mill A. L. A&A 0004-6361 539 2012 A45 Lehner N., Howk J. C., Tripp T. M. et al 2013 ApJ 770 138 10.1088/0004-637X/770/2/138 Lehner N., Howk J. C., Tripp T. M. et al ApJ 0004-637X 770 2 138 2013 138 Lopez S., Ellison S., D’Odorico S. and Kim T.-S. 2007 A&A 469 61 10.1051/0004-6361:20065301 Lopez S., Ellison S., D’Odorico S. and Kim T.-S. A&A 0004-6361 469 2007 61 Martin C. L., Shapley A. E., Coil A. L. et al 2012 ApJ 760 127 10.1088/0004-637X/760/2/127 Martin C. L., Shapley A. E., Coil A. L. et al ApJ 0004-637X 760 2 127 2012 127 Mathes N. L., Churchill C. W., Kacprzak G. G. et al 2014 ApJ 792 128 10.1088/0004-637X/792/2/128 Mathes N. L., Churchill C. W., Kacprzak G. G. et al ApJ 0004-637X 792 2 128 2014 128 Muzahid S. 2014 ApJ 784 5 10.1088/0004-637X/784/1/5 Muzahid S. ApJ 0004-637X 784 1 5 2014 5 Muzahid S., Kacprzak G. G., Charlton J. C. and Churchill C. W. 2016 ApJ 823 66 10.3847/0004-637X/823/1/66 Muzahid S., Kacprzak G. G., Charlton J. C. and Churchill C. W. ApJ 0004-637X 823 1 66 2016 66 Muzahid S., Kacprzak G. G., Churchill C. W. et al 2015 ApJ 811 132 10.1088/0004-637X/811/2/132 Muzahid S., Kacprzak G. G., Churchill C. W. et al ApJ 0004-637X 811 2 132 2015 132 Navarro J. F., Frenk C. S. and White S. D. M. 1996 ApJ 462 563 10.1086/177173 Navarro J. F., Frenk C. S. and White S. D. M. ApJ 462 1996 563 Nelson D., Kauffmann G., Pillepich A. et al 2018 MNRAS 477 450 10.1093/mnras/sty656 Nelson D., Kauffmann G., Pillepich A. et al MNRAS 0035-8711 477 2018 450 Nielsen N. M., Churchill C. W., Kacprzak G. G., Murphy M. T. and Evans J. L. 2015 ApJ 812 83 10.1088/0004-637X/812/1/83 Nielsen N. M., Churchill C. W., Kacprzak G. G., Murphy M. T. and Evans J. L. ApJ 0004-637X 812 1 83 2015 83 Nielsen N. M., Churchill C. W., Kacprzak G. G., Murphy M. T. and Evans J. L. 2016 ApJ 818 171 10.3847/0004-637X/818/2/171 Nielsen N. M., Churchill C. W., Kacprzak G. G., Murphy M. T. and Evans J. L. ApJ 0004-637X 818 2 171 2016 171 Nielsen N. M., Kacprzak G. G., Muzahid S. et al 2017 ApJ 834 148 10.3847/1538-4357/834/2/148 Nielsen N. M., Kacprzak G. G., Muzahid S. et al ApJ 0004-637X 834 2 148 2017 148 Nielsen N. M., Kacprzak G. G., Pointon S. K., Churchill C. W. and Murphy M. T. 2018 ApJ 869 153 10.3847/1538-4357/aaedbd Nielsen N. M., Kacprzak G. G., Pointon S. K., Churchill C. W. and Murphy M. T. ApJ 0004-637X 869 2 153 2018 153 Oliphant T. E. 2007 CSE 9 10 10.1109/MCSE.2007.58 Oliphant T. E. CSE 1070-8413 9 2007 10 Oppenheimer B. D., Crain R. A., Schaye J. et al 2016 MNRAS 460 2157 10.1093/mnras/stw1066 Oppenheimer B. D., Crain R. A., Schaye J. et al MNRAS 0035-8711 460 2016 2157 Oppenheimer B. D., Davé R., Kereš D. et al 2010 MNRAS 406 2325 10.1111/j.1365-2966.2010.16872.x Oppenheimer B. D., Davé R., Kereš D. et al MNRAS 0035-8711 406 2010 2325 Oppenheimer B. D., Segers M., Schaye J., Richings A. J. and Crain R. A. 2018 MNRAS 474 4740 10.1093/mnras/stx2967 Oppenheimer B. D., Segers M., Schaye J., Richings A. J. and Crain R. A. MNRAS 0035-8711 474 2018 4740 Ownsworth J. R., Conselice C. J., Mortlock A. et al 2014 MNRAS 445 2198 10.1093/mnras/stu1802 Ownsworth J. R., Conselice C. J., Mortlock A. et al MNRAS 0035-8711 445 2014 2198 Peeples M. S., Corlies L., Tumlinson J. et al 2019 ApJ 873 129 10.3847/1538-4357/ab0654 Peeples M. S., Corlies L., Tumlinson J. et al ApJ 0004-637X 873 2 129 2019 129 Pérez F. and Granger B. E. 2007 CSE 9 21 10.1109/MCSE.2007.53 Pérez F. and Granger B. E. CSE 1070-8413 9 2007 21 Pointon S. K., Kacprzak G. G., Nielsen N. M. et al 2019 ApJ 883 78 10.3847/1538-4357/ab3b0e Pointon S. K., Kacprzak G. G., Nielsen N. M. et al ApJ 0004-637X 883 1 78 2019 78 Pointon S. K., Nielsen N. M., Kacprzak G. G. et al 2017 ApJ 844 23 10.3847/1538-4357/aa7743 Pointon S. K., Nielsen N. M., Kacprzak G. G. et al ApJ 0004-637X 844 1 23 2017 23 Prochaska J. X., Weiner B., Chen H.-W., Mulchaey J. and Cooksey K. 2011 ApJ 740 91 10.1088/0004-637X/740/2/91 Prochaska J. X., Weiner B., Chen H.-W., Mulchaey J. and Cooksey K. ApJ 0004-637X 740 2 91 2011 91 Putman M. E., Peek J. E. G. and Joung M. R. 2012 ARA&A 50 491 10.1146/annurev-astro-081811-125612 Putman M. E., Peek J. E. G. and Joung M. R. ARA&A 0066-4146 50 2012 491 Qu Y., Di Matteo P., Lehnert M. D. and van Driel W. 2011 A&A 530 A10 10.1051/0004-6361/201015224 Qu Y., Di Matteo P., Lehnert M. D. and van Driel W. A&A 0004-6361 530 2011 A10 Qu Z. and Bregman J. N. 2018 ApJ 856 5 10.3847/1538-4357/aaafd4 Qu Z. and Bregman J. N. ApJ 0004-637X 856 1 5 2018 5 Rubin K. H. R., Prochaska J. X., Koo D. C. et al 2014 ApJ 794 156 10.1088/0004-637X/794/2/156 Rubin K. H. R., Prochaska J. X., Koo D. C. et al ApJ 0004-637X 794 2 156 2014 156 Rubin K. H. R., Prochaska J. X., Koo D. C. and Phillips A. C. 2012 ApJL 747 L26 10.1088/2041-8205/747/2/L26 Rubin K. H. R., Prochaska J. X., Koo D. C. and Phillips A. C. ApJL 0004-637X 747 2012 L26 Savage B. D., Kim T.-S., Wakker B. P. et al 2014 ApJS 212 8 10.1088/0067-0049/212/1/8 Savage B. D., Kim T.-S., Wakker B. P. et al ApJS 0067-0049 212 1 8 2014 8 Schaye J., Crain R. A., Bower R. G. et al 2015 MNRAS 446 521 10.1093/mnras/stu2058 Schaye J., Crain R. A., Bower R. G. et al MNRAS 0035-8711 446 2015 521 Sheinis A. I., Bolte M., Epps H. W. et al 2002 PASP 114 851 10.1086/341706 Sheinis A. I., Bolte M., Epps H. W. et al PASP 1538-3873 114 798 851 2002 851 Shen S., Madau P., Aguirre A. et al 2012 ApJ 760 50 10.1088/0004-637X/760/1/50 Shen S., Madau P., Aguirre A. et al ApJ 0004-637X 760 1 50 2012 50 Simard L., Willmer C. N. A., Vogt N. P. et al 2002 ApJS 142 1 10.1086/341399 Simard L., Willmer C. N. A., Vogt N. P. et al ApJS 0067-0049 142 1 1 2002 1 Steidel C. C., Kollmeier J. A., Shapley A. E. et al 2002 ApJ 570 526 10.1086/339792 Steidel C. C., Kollmeier J. A., Shapley A. E. et al ApJ 0004-637X 570 2 526 2002 526 Stern J., Hennawi J. F., Prochaska J. X. and Werk J. K. 2016 ApJ 830 87 10.3847/0004-637X/830/2/87 Stern J., Hennawi J. F., Prochaska J. X. and Werk J. K. ApJ 0004-637X 830 2 87 2016 87 Stewart K. R., Kaufmann T., Bullock J. S. et al 2011 ApJ 738 39 10.1088/0004-637X/738/1/39 Stewart K. R., Kaufmann T., Bullock J. S. et al ApJ 0004-637X 738 1 39 2011 39 Stocke J. T., Keeney B. A., Danforth C. W. et al 2013 ApJ 763 148 10.1088/0004-637X/763/2/148 Stocke J. T., Keeney B. A., Danforth C. W. et al ApJ 0004-637X 763 2 148 2013 148 Strickland D. K. and Heckman T. M. 2009 ApJ 697 2030 10.1088/0004-637X/697/2/2030 Strickland D. K. and Heckman T. M. ApJ 0004-637X 697 2 2030 2009 2030 Suresh J., Rubin K. H. R., Kannan R. et al 2017 MNRAS 465 2966 10.1093/mnras/stw2499 Suresh J., Rubin K. H. R., Kannan R. et al MNRAS 0035-8711 465 2017 2966 Trujillo-Gomez S., Klypin A., Primack J. and Romanowsky A. J. 2011 ApJ 742 16 10.1088/0004-637X/742/1/16 Trujillo-Gomez S., Klypin A., Primack J. and Romanowsky A. J. ApJ 0004-637X 742 1 16 2011 16 Tumlinson J., Peeples M. S. and Werk J. K. 2017 ARA&A 55 389 10.1146/annurev-astro-091916-055240 Tumlinson J., Peeples M. S. and Werk J. K. ARA&A 0066-4146 55 2017 389 Tumlinson J., Thom C., Werk J. K. et al 2011 Sci 334 948 10.1126/science.1209840 Tumlinson J., Thom C., Werk J. K. et al Sci 334 2011 948 Tumlinson J., Thom C., Werk J. K. et al 2013 ApJ 777 59 10.1088/0004-637X/777/1/59 Tumlinson J., Thom C., Werk J. K. et al ApJ 0004-637X 777 1 59 2013 59 van de Voort F. 2017 Gas Accretion onto Galaxies ed A. Fox and R. Davé (Cham: Springer) 301 10.1007/978-3-319-52512-9_13 van de Voort F. ed Fox A. and Davé R. Gas Accretion onto Galaxies 0067-0057 430 2017 301 Werk J. K., Prochaska J. X., Cantalupo S. et al 2016 ApJ 833 54 10.3847/1538-4357/833/1/54 Werk J. K., Prochaska J. X., Cantalupo S. et al ApJ 0004-637X 833 1 54 2016 54 Werk J. K., Prochaska J. X., Thom C. et al 2013 ApJS 204 17 10.1088/0067-0049/204/2/17 Werk J. K., Prochaska J. X., Thom C. et al ApJS 0067-0049 204 2 17 2013 17 Wolf C., Meisenheimer K., Rix H.-W. et al 2003 A&A 401 73 10.1051/0004-6361:20021513 Wolf C., Meisenheimer K., Rix H.-W. et al A&A 0004-6361 401 2003 73 Zahedy F. S., Chen H.-W., Johnson S. D. et al 2019 MNRAS 484 2257 10.1093/mnras/sty3482 Zahedy F. S., Chen H.-W., Johnson S. D. et al MNRAS 0035-8711 484 2019 2257 Publisher Copyright: © 2019. The American Astronomical Society. All rights reserved.
PY - 2019/11/20
Y1 - 2019/11/20
N2 - We probe the high-ionization circumgalactic medium by examining absorber kinematics, absorber-galaxy kinematics, and average absorption profiles of 31 O vi absorbers from the "Multiphase Galaxy Halos" Survey as a function of halo mass, redshift, inclination, and azimuthal angle. The galaxies are isolated at 0.12 < z gal < 0.66 and are probed by a background quasar within D ≈ 200 kpc. Each absorber-galaxy pair has Hubble Space Telescope images and COS quasar spectra, and most galaxy redshifts have been accurately measured from Keck/ESI spectra. Using the pixel-velocity two-point correlation function (TPCF) method, we find that O vi absorber kinematics have a strong halo mass dependence. Absorbers hosted by ∼L∗ galaxies have the largest velocity dispersions, which we interpret to be that the halo virial temperature closely matches the temperature at which the collisionally ionized O vi fraction peaks. Lower-mass galaxies and group environments have smaller velocity dispersions. Total column densities follow the same behavior, consistent with theoretical findings. After normalizing out the observed mass dependence, we studied absorber-galaxy kinematics with a modified TPCF and found nonvirialized motions due to outflowing gas. Edge-on minor-Axis gas has large optical depths concentrated near the galaxy systemic velocity as expected for bipolar outflows, while face-on minor-Axis gas has a smoothly decreasing optical depth distribution out to large normalized absorber-galaxy velocities, suggestive of decelerating outflowing gas. Accreting gas signatures are not observed owing to "kinematic blurring," in which multiple line-of-sight structures are observed. These results indicate that galaxy mass dominates O vi properties over baryon cycle processes.
AB - We probe the high-ionization circumgalactic medium by examining absorber kinematics, absorber-galaxy kinematics, and average absorption profiles of 31 O vi absorbers from the "Multiphase Galaxy Halos" Survey as a function of halo mass, redshift, inclination, and azimuthal angle. The galaxies are isolated at 0.12 < z gal < 0.66 and are probed by a background quasar within D ≈ 200 kpc. Each absorber-galaxy pair has Hubble Space Telescope images and COS quasar spectra, and most galaxy redshifts have been accurately measured from Keck/ESI spectra. Using the pixel-velocity two-point correlation function (TPCF) method, we find that O vi absorber kinematics have a strong halo mass dependence. Absorbers hosted by ∼L∗ galaxies have the largest velocity dispersions, which we interpret to be that the halo virial temperature closely matches the temperature at which the collisionally ionized O vi fraction peaks. Lower-mass galaxies and group environments have smaller velocity dispersions. Total column densities follow the same behavior, consistent with theoretical findings. After normalizing out the observed mass dependence, we studied absorber-galaxy kinematics with a modified TPCF and found nonvirialized motions due to outflowing gas. Edge-on minor-Axis gas has large optical depths concentrated near the galaxy systemic velocity as expected for bipolar outflows, while face-on minor-Axis gas has a smoothly decreasing optical depth distribution out to large normalized absorber-galaxy velocities, suggestive of decelerating outflowing gas. Accreting gas signatures are not observed owing to "kinematic blurring," in which multiple line-of-sight structures are observed. These results indicate that galaxy mass dominates O vi properties over baryon cycle processes.
UR - http://www.scopus.com/inward/record.url?scp=85077343747&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85077343747&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ab48eb
DO - 10.3847/1538-4357/ab48eb
M3 - Article
AN - SCOPUS:85077343747
SN - 0004-637X
VL - 886
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 66
ER -