TY - JOUR
T1 - Kinetic analysis shows that iron deficiency decreases liver vitamin A mobilization in rats
AU - Jang, Jing Tsz
AU - Green, Joanne Balmer
AU - Beard, John L.
AU - Green, Michael H.
PY - 2000
Y1 - 2000
N2 - In view of evidence that nutritional status of iron and vitamin A may affect the other nutrient's metabolism, we used model-based compartmental analysis to examine effects of iron deficiency on whole-body vitamin A dynamics in rats. Weanling male Sprague-Dawley rats were fed the AIN93G diet with 2.5 nmol retinyl palmitate/g and either 45 [control (CN)] or 4 μg/g Fe [iron-deficient (ID)] for 8 wk. ID rats consumed food ad libitum; CN rats were food-restricted so that their body weights were the same as ID rats. Two rats/group were killed; liver vitamin A was determined and used for vitamin A balance calculations. [3H]Retinol-labeled plasma was administered intravenously to remaining rats, and 27 serial blood samples were collected for 7 wk. At killing, plasma vitamin A was 0.52 (+) 0.12 (ID, n = 5) vs. 1.34 (+) 0.12 μmol/L (CN, n = 6; P < 0.001), and liver vitamin A was 809 (+) 94 (ID) vs. 112 (+) 24 nmol (CN, P < 0.001). Plasma tracer data were fit to a three- or four-compartment model using the Simulation, Analysis and Modeling computer program and kinetic parameters were calculated. Vitamin A transfer rate between the retinyl ester storage pool [14 (+) 3 (ID) vs. 24 (+) 4 nmol/d (CN), P < 0.05] and plasma was lower in ID rats. Vitamin A remained longer in the body [44 (+) 11 (ID) vs. 22 (+) 3 d (CN), P < 0.05]. Adjusted mean disposal rate was lower in ID (10.0) than CN rats (19.9 nmol/d), as was estimated vitamin A absorption efficiency [58% (ID) vs. 76% (CN)]. Our results suggest that iron deficiency inhibits mobilization of vitamin A stores and may decrease the absorption and irreversible utilization of vitamin A.
AB - In view of evidence that nutritional status of iron and vitamin A may affect the other nutrient's metabolism, we used model-based compartmental analysis to examine effects of iron deficiency on whole-body vitamin A dynamics in rats. Weanling male Sprague-Dawley rats were fed the AIN93G diet with 2.5 nmol retinyl palmitate/g and either 45 [control (CN)] or 4 μg/g Fe [iron-deficient (ID)] for 8 wk. ID rats consumed food ad libitum; CN rats were food-restricted so that their body weights were the same as ID rats. Two rats/group were killed; liver vitamin A was determined and used for vitamin A balance calculations. [3H]Retinol-labeled plasma was administered intravenously to remaining rats, and 27 serial blood samples were collected for 7 wk. At killing, plasma vitamin A was 0.52 (+) 0.12 (ID, n = 5) vs. 1.34 (+) 0.12 μmol/L (CN, n = 6; P < 0.001), and liver vitamin A was 809 (+) 94 (ID) vs. 112 (+) 24 nmol (CN, P < 0.001). Plasma tracer data were fit to a three- or four-compartment model using the Simulation, Analysis and Modeling computer program and kinetic parameters were calculated. Vitamin A transfer rate between the retinyl ester storage pool [14 (+) 3 (ID) vs. 24 (+) 4 nmol/d (CN), P < 0.05] and plasma was lower in ID rats. Vitamin A remained longer in the body [44 (+) 11 (ID) vs. 22 (+) 3 d (CN), P < 0.05]. Adjusted mean disposal rate was lower in ID (10.0) than CN rats (19.9 nmol/d), as was estimated vitamin A absorption efficiency [58% (ID) vs. 76% (CN)]. Our results suggest that iron deficiency inhibits mobilization of vitamin A stores and may decrease the absorption and irreversible utilization of vitamin A.
UR - http://www.scopus.com/inward/record.url?scp=0034014682&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034014682&partnerID=8YFLogxK
U2 - 10.1093/jn/130.5.1291
DO - 10.1093/jn/130.5.1291
M3 - Article
C2 - 10801932
AN - SCOPUS:0034014682
SN - 0022-3166
VL - 130
SP - 1291
EP - 1296
JO - Journal of Nutrition
JF - Journal of Nutrition
IS - 5
ER -