Kinetic mechanisms of high temperature tungsten oxidation: Experimental evaluation with modeling

Justin L. Sabourin, Richard A. Yetter

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

The high temperature heterogeneous oxidation of bulk tungsten (W) was studied using thermogravimetric analysis over a range of flow reactor temperatures and steam (H2O) pressures, supporting previous work involving O2, CO2, and CO reactions with W. Isothermal reaction rates were determined at temperatures ranging from approximately 1100 to 1700°C. Constant system pressures of 1 atm were employed, however H 2O partial pressures ranged from 7.6 to 25.8 torr. Using Arrhenius reaction rate kinetics, the activation energy of the W-H2O reaction was found to be 51 kcal/mol, along with a pressure exponent of 0.83. Oxidation rates of the H2O oxidizer were determined to lie between that of O2 and CO2. Using kinetic correlations developed for tungsten oxidation by H2O, CO2, and O2 it was determined that H2O is the dominant oxidizing species involved in tungsten rocket nozzle erosion when an AP/HTPB propellant is used. It was also determined that under common rocket motor conditions the nozzle oxidation rates are limited either by molecular diffusion, or by the number of active sites at the nozzles surface. These results emphasize the need for a detailed mechanism describing tungsten oxidation in order to accurately model W nozzle erosion. A numerical model of the flow reactor used in this study is presented which will allow such a mechanism to be developed.

Original languageEnglish (US)
Title of host publication45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
PublisherAmerican Institute of Aeronautics and Astronautics Inc.
ISBN (Print)9781563479762
DOIs
StatePublished - 2009

Publication series

Name45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Control and Systems Engineering
  • Space and Planetary Science
  • General Energy
  • Electrical and Electronic Engineering
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Kinetic mechanisms of high temperature tungsten oxidation: Experimental evaluation with modeling'. Together they form a unique fingerprint.

Cite this