Kinetics and mechanism of haloacetaldehyde formation from the reaction of acetaldehyde and chlorine

Yuqin Mao, Wen Zhang, Shengqi Qi, Hongwei Yang, Yuefeng F. Xie

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


Haloacetaldehydes (HALs) are the third prevalent group of disinfection by-products (DBPs) by weight in drinking water, and their cytotoxicity and genotoxicity are higher than regulated DBPs. In order to understand their formation mechanism during chlorination and ozonation-chlorination, this study examined the reaction kinetics of chloral hydrate (CH), dichloroacetaldehyde (DCA), chloroacetaldehyde (CA) and acetaldehyde by chlorine at different pH values and chlorine doses. The results showed that the reaction rate constants increased with pH and chlorine dose, except that the degradation of CH would not be affected by the presence of free chlorine. At the same pH and chlorine dose, the half-lives of CH, DCA, CA and acetaldehyde were in the order of CH > acetaldehyde ≫ DCA > CA. A kinetic model used to predict the formation of HALs and chloroform during chlorination of acetaldehyde was developed, and the predicted data fitted well with the measured data. As pre-ozonation could oxidize natural organic matter to acetaldehydes, the concentration of acetaldehyde formed after pre-ozonation was used to calculate the HAL yields during ozonation-chlorination by the kinetic model, which fitted the experimental results well. The kinetic model elucidated that the formation mechanism of HALs was a stepwise substitution process on the α-hydrogen of acetaldehyde during chlorination.

Original languageEnglish (US)
Article number131253
StatePublished - Nov 2021

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Environmental Chemistry
  • General Chemistry
  • Pollution
  • Public Health, Environmental and Occupational Health
  • Health, Toxicology and Mutagenesis


Dive into the research topics of 'Kinetics and mechanism of haloacetaldehyde formation from the reaction of acetaldehyde and chlorine'. Together they form a unique fingerprint.

Cite this