Kinetics and mechanisms for reactions of Fe(II) with iron(III) oxides

Byong Hun Joen, Brian A. Dempsey, William D. Burgos

Research output: Contribution to journalArticlepeer-review

152 Scopus citations

Abstract

Uptake of Fe(II) onto hematite (α-Fe2O3), corundum (α-Al2O3), amorphous ferric oxide (AFO), and a mixture of hematite and AFO was measured. Uptake was operationally divided into adsorption (extractable by 0.5 N HCl within 20 h) and fixation (extractable by 3.0 N HCl within 7 d). For 0.25 mM Fe(II) onto 25 mM iron(III) hematite at pH 6.8: (i) 10% of Fe(II) was adsorbed within 1 min; (ii) 20% of Fe(II) was adsorbed within 1 d; (iii) uptake slowly increased to 24% of Fe(II) during the next 24 d, almost all adsorbed; (iv) at 30 d, the uptake increased to 28% of Fe(II) with 6% of total Fe(II) fixed; and (v) uptake slowly increased to 30% of Fe(II) by 45 d with 10% of total Fe(II) fixed. Similar results were observed for 0.125 mM Fe(II) onto 25 mM iron(III) hematite, except that percent of adsorption and fixation were increased. There was adsorption but no fixation for 0.25 mM Fe(II) onto corundum [196.2 mM Al(III)] at pH 6.8, for 0.125 mM Fe(II) onto 25 mM iron(III) hematite at pH 4.5, and for 0.25 mM Zn(II) onto 25 mM iron(III) hematite at pH 6.8. A small addition of AFO to the hematite suspension increased Fe(II) fixation when 0.25 mM Fe(II) was reacted with 25 mM iron(III) hematite and 0.025 mM Fe(III) AFO at pH 6.8. Reaction of 0.125 mM Fe(II) with 2.5 mM Fe(III) AFO resulted in rapid adsorption of 30% of added Fe(II), followed by conversion of AFO to goethite and a decrease in adsorption without Fe(II) fixation. The fixation of Fe(II) by hematite at pH 6.8 is consistent with interfacial electron transfer and the formation of new mineral phases. We propose that electron transfer from adsorbed Fe(II) to structural Fe(III) in hematite results in oxidation of Fe(II) to AFO on the surface of hematite and that solid-phase contact among hematite, AFO, and structural Fe(II) produces magnetite (Fe3O4). The unique interactions of Fe(II) with iron(III) oxides would be environmentally important to understand the fate of redoxsensitive chemicals.

Original languageEnglish (US)
Pages (from-to)3309-3315
Number of pages7
JournalEnvironmental Science and Technology
Volume37
Issue number15
DOIs
StatePublished - Aug 1 2003

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Environmental Chemistry

Fingerprint

Dive into the research topics of 'Kinetics and mechanisms for reactions of Fe(II) with iron(III) oxides'. Together they form a unique fingerprint.

Cite this