TY - JOUR
T1 - Kinetics and thermodynamics of the interaction of elongation factor Tu with elongation factor Ts, guanine nucleotides, and aminoacyl-tRNA
AU - Romero, G.
AU - Chau, V.
AU - Biltonen, R. L.
N1 - Copyright:
Copyright 2004 Elsevier B.V., All rights reserved.
PY - 1985
Y1 - 1985
N2 - The exchange of elongation factor Tu (EF-Tu)-bound GTP in the presence and absence of elongation factor Ts (EF-Ts) was monitored by equilibrium exchange kinetics procedures. The kinetics of the exchange reaction were found to be consistent with the formation of a ternary complex EF-Tu·GTP·EF-Ts. The equilibrium association constants of EF-Ts to the EF-Tu·GTP complex and of GTP to EF-Tu·EF-Ts were calculated to be 7 x 107 and 2 x 106 M-1, respectively. The dissociation rate constant of GTP from the ternary complex was found to be 13 s-1. This is 500 times larger than the GTP dissociation rate constants from the EF-Tu·GTP complex (2.5 x 10-2 s-1). A procedure based on the observation that EF-Tu·GTP protects the aminoacyl-tRNA molecule from phosphodiesterase I-catalyzed hydrolysis was used to study the interactions of EF-Tu·GTP with Val-tRNA(Val) and Phe-tRNA(Phe). Binding constants of Phe-tRNA(Phe) and Val-tRNA(Val) to EF-Tu·GTP of 4.8 x 107 and 1.2 x 107 M-1, respectively, were obtained. The exchange of bound GDP with GTP in solution in the presence of EF-Ts was also examined. The kinetics of the reaction were found to be consistent with a rapid equilibrium mechanism. It was observed that the exchange of bound GDP with free GTP in the presence of a large excess of the latter was accelerated by the addition of aminoacyl-tRNA. On the basis of these observations, a complete mechanism to explain the interactions among EF-Tu, EF-Ts, guanine nucleotides, and aminoacyl-tRNA has been developed.
AB - The exchange of elongation factor Tu (EF-Tu)-bound GTP in the presence and absence of elongation factor Ts (EF-Ts) was monitored by equilibrium exchange kinetics procedures. The kinetics of the exchange reaction were found to be consistent with the formation of a ternary complex EF-Tu·GTP·EF-Ts. The equilibrium association constants of EF-Ts to the EF-Tu·GTP complex and of GTP to EF-Tu·EF-Ts were calculated to be 7 x 107 and 2 x 106 M-1, respectively. The dissociation rate constant of GTP from the ternary complex was found to be 13 s-1. This is 500 times larger than the GTP dissociation rate constants from the EF-Tu·GTP complex (2.5 x 10-2 s-1). A procedure based on the observation that EF-Tu·GTP protects the aminoacyl-tRNA molecule from phosphodiesterase I-catalyzed hydrolysis was used to study the interactions of EF-Tu·GTP with Val-tRNA(Val) and Phe-tRNA(Phe). Binding constants of Phe-tRNA(Phe) and Val-tRNA(Val) to EF-Tu·GTP of 4.8 x 107 and 1.2 x 107 M-1, respectively, were obtained. The exchange of bound GDP with GTP in solution in the presence of EF-Ts was also examined. The kinetics of the reaction were found to be consistent with a rapid equilibrium mechanism. It was observed that the exchange of bound GDP with free GTP in the presence of a large excess of the latter was accelerated by the addition of aminoacyl-tRNA. On the basis of these observations, a complete mechanism to explain the interactions among EF-Tu, EF-Ts, guanine nucleotides, and aminoacyl-tRNA has been developed.
UR - http://www.scopus.com/inward/record.url?scp=0021821218&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0021821218&partnerID=8YFLogxK
M3 - Article
C2 - 3846595
AN - SCOPUS:0021821218
SN - 0021-9258
VL - 260
SP - 6167
EP - 6174
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 10
ER -