TY - GEN
T1 - Labeled Data Generation with Inexact Supervision
AU - Dai, Enyan
AU - Shu, Kai
AU - Sun, Yiwei
AU - Wang, Suhang
N1 - Publisher Copyright:
© 2021 ACM.
PY - 2021/8/14
Y1 - 2021/8/14
N2 - The recent advanced deep learning techniques have shown the promising results in various domains such as computer vision and natural language processing. The success of deep neural networks in supervised learning heavily relies on a large amount of labeled data. However, obtaining labeled data with target labels is often challenging due to various reasons such as cost of labeling and privacy issues, which challenges existing deep models. In spite of that, it is relatively easy to obtain data with inexact supervision, i.e., having labels/tags related to the target task. For example, social media platforms are overwhelmed with billions of posts and images with self-customized tags, which are not the exact labels for target classification tasks but are usually related to the target labels. It is promising to leverage these tags (inexact supervision) and their relations with target classes to generate labeled data to facilitate the downstream classification tasks. However, the work on this is rather limited. Therefore, we study a novel problem of labeled data generation with inexact supervision. We propose a novel generativeframework named as ADDES which can synthesize high-quality labeled data for target classification tasks by learning from data with inexact supervision and the relations between inexact supervision and target classes. Experimental results on image and text datasets demonstrate the effectiveness of the proposed ADDES for generating realistic labeled data from inexact supervision to facilitate the target classification task.
AB - The recent advanced deep learning techniques have shown the promising results in various domains such as computer vision and natural language processing. The success of deep neural networks in supervised learning heavily relies on a large amount of labeled data. However, obtaining labeled data with target labels is often challenging due to various reasons such as cost of labeling and privacy issues, which challenges existing deep models. In spite of that, it is relatively easy to obtain data with inexact supervision, i.e., having labels/tags related to the target task. For example, social media platforms are overwhelmed with billions of posts and images with self-customized tags, which are not the exact labels for target classification tasks but are usually related to the target labels. It is promising to leverage these tags (inexact supervision) and their relations with target classes to generate labeled data to facilitate the downstream classification tasks. However, the work on this is rather limited. Therefore, we study a novel problem of labeled data generation with inexact supervision. We propose a novel generativeframework named as ADDES which can synthesize high-quality labeled data for target classification tasks by learning from data with inexact supervision and the relations between inexact supervision and target classes. Experimental results on image and text datasets demonstrate the effectiveness of the proposed ADDES for generating realistic labeled data from inexact supervision to facilitate the target classification task.
UR - http://www.scopus.com/inward/record.url?scp=85114915097&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85114915097&partnerID=8YFLogxK
U2 - 10.1145/3447548.3467306
DO - 10.1145/3447548.3467306
M3 - Conference contribution
AN - SCOPUS:85114915097
T3 - Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
SP - 218
EP - 226
BT - KDD 2021 - Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PB - Association for Computing Machinery
T2 - 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2021
Y2 - 14 August 2021 through 18 August 2021
ER -