Abstract
Interseismic recovery of fault strength (healing) following earthquake failure is a fundamental requirement of the seismic cycle and likely plays a key role in determining the stability and slip behavior of tectonic faults. We report on laboratory measurements of time- and slip-dependent frictional strengthening for natural and synthetic gouges to evaluate the role of mineralogy in frictional strengthening. We performed slide-hold-slide (SHS) shearing experiments on nine natural fault gouges and eight synthetic gouges at conditions of 20 MPa normal stress, 100% relative humidity (RH), large shear strain (~15), and room temperature. Phyllosilicate-rich rocks show the lowest rates of frictional strengthening. Samples rich in quartz and feldspar exhibit intermediate rates of frictional strengthening, and calcite-rich gouges show the largest values. Our results show that (1) the rates of frictional strengthening and creep relaxation scale with frictional strength, (2) phyllosilicate-rich fault gouges have low strength and healing characteristics that promote stable, aseismic creep, (3) most natural fault gouges exhibit intermediate rates of frictional strengthening, consistent with a broad range of fault slip behaviors, and (4) calcite-rich fault rocks show the highest rates of frictional strengthening, low values of dilation upon reshear, and high frictional strengths, all of which would promote seismogenic behavior.
Original language | English (US) |
---|---|
Pages (from-to) | 1183-1201 |
Number of pages | 19 |
Journal | Journal of Geophysical Research: Solid Earth |
Volume | 121 |
Issue number | 2 |
DOIs | |
State | Published - Feb 1 2016 |
All Science Journal Classification (ASJC) codes
- Geophysics
- Geochemistry and Petrology
- Earth and Planetary Sciences (miscellaneous)
- Space and Planetary Science