Ladderphane copolymers for high-temperature capacitive energy storage

Jie Chen, Yao Zhou, Xingyi Huang, Chunyang Yu, Donglin Han, Ao Wang, Yingke Zhu, Kunming Shi, Qi Kang, Pengli Li, Pingkai Jiang, Xiaoshi Qian, Hua Bao, Shengtao Li, Guangning Wu, Xinyuan Zhu, Qing Wang

Research output: Contribution to journalArticlepeer-review

266 Scopus citations

Abstract

For capacitive energy storage at elevated temperatures1–4, dielectric polymers are required to integrate low electrical conduction with high thermal conductivity. The coexistence of these seemingly contradictory properties remains a persistent challenge for existing polymers. We describe here a class of ladderphane copolymers exhibiting more than one order of magnitude lower electrical conductivity than the existing polymers at high electric fields and elevated temperatures. Consequently, the ladderphane copolymer possesses a discharged energy density of 5.34 J cm−3 with a charge–discharge efficiency of 90% at 200 °C, outperforming the existing dielectric polymers and composites. The ladderphane copolymers self-assemble into highly ordered arrays by π–π stacking interactions5,6, thus giving rise to an intrinsic through-plane thermal conductivity of 1.96 ± 0.06 W m−1 K−1. The high thermal conductivity of the copolymer film permits efficient Joule heat dissipation and, accordingly, excellent cyclic stability at elevated temperatures and high electric fields. The demonstration of the breakdown self-healing ability of the copolymer further suggests the promise of the ladderphane structures for high-energy-density polymer capacitors operating under extreme conditions.

Original languageEnglish (US)
Pages (from-to)62-66
Number of pages5
JournalNature
Volume615
Issue number7950
DOIs
StatePublished - Mar 2 2023

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Ladderphane copolymers for high-temperature capacitive energy storage'. Together they form a unique fingerprint.

Cite this