Large-body-sized Glass-based Active Interposer for High-Performance Computing

Siddharth Ravichandran, Mohanalingam Kathaperumal, Madhavan Swaminathan, Rao Tummala

Research output: Chapter in Book/Report/Conference proceedingConference contribution

27 Scopus citations

Abstract

This paper presents a next generation glass-based active interposer with 2 micron polymer RDL. Passive 2.5D interposers have become a mainstream solution to address the bandwidth demands of high-performance computing (HPC) applications. However, such passive interposers face challenges in meeting future performance, cost and reliability needs and active interposers have been studied recently as a means of scaling interposer performance. Given the ability to grow CMOS on Silicon more readily, only Silicon has been studied as substrate core for active interposers. However, for large body sizes, Silicon is not cost effective and interconnects tend to be lossy over long distances. Glass has been explored as a passive interposer core previously, and glass-based panel embedding (GPE) solutions have also been developed for fanout applications. This work uses GPE technology to demonstrate a glass-based active interposer substrate with potential for large-body-sized packages. The key challenge, however, in achieving a wiring density of over 250 IO/mm is the surface non-coplanarities associated with cavities in glass substrates. This paper describes the fabrication process for a Glass-based active interposer with dies embedded in glass cavities, and a systematic parametric process optimization to improve the surface planarity to demonstrate 2 micron L/S RDL on die-embedded glass substrates.

Original languageEnglish (US)
Title of host publicationProceedings - IEEE 70th Electronic Components and Technology Conference, ECTC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages879-884
Number of pages6
ISBN (Electronic)9781728161808
DOIs
StatePublished - Jun 2020
Event70th IEEE Electronic Components and Technology Conference, ECTC 2020 - Orlando, United States
Duration: Jun 3 2020Jun 30 2020

Publication series

NameProceedings - Electronic Components and Technology Conference
Volume2020-June
ISSN (Print)0569-5503

Conference

Conference70th IEEE Electronic Components and Technology Conference, ECTC 2020
Country/TerritoryUnited States
CityOrlando
Period6/3/206/30/20

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Large-body-sized Glass-based Active Interposer for High-Performance Computing'. Together they form a unique fingerprint.

Cite this