TY - GEN
T1 - LARGE-EDDY SIMULATION OF SEPARATED FLOWS ON UNCONVENTIONALLY COARSE GRIDS
AU - BIn, Yuanwei
AU - Park, George I.
AU - Lv, Yu
AU - Yang, Xiang I.A.
N1 - Publisher Copyright:
Copyright © 2023 by ASME.
PY - 2023
Y1 - 2023
N2 - We examine and benchmark the emerging idea of applying the large-eddy simulation (LES) formalism to unconventionally coarse grids where RANS would be considered more appropriate at first glance. We distinguish this idea from very-large-eddy-simulation (VLES) and detached-eddy-simulation (DES), which require switching between RANS and LES formalism. LES on RANS grid is appealing because first, it requires minimal changes to a production code; second, it is more cost-effective than LES; third, it converges to LES; and most importantly, it accurately predicts flows with separation. This work quantifies the benefit of LES on RANS-like grids as compared to RANS on the same grids. Three canonical cases are considered: periodic hill, backward-facing step, and jet in cross flow. We conduct direct numerical simulation (DNS), proper LES on LES grids, LES on RANS-quality grids, and RANS. We show that while the LES solutions on the RANS-quality grids are not grid converged, they are twice as accurate as the RANS on the same grids.
AB - We examine and benchmark the emerging idea of applying the large-eddy simulation (LES) formalism to unconventionally coarse grids where RANS would be considered more appropriate at first glance. We distinguish this idea from very-large-eddy-simulation (VLES) and detached-eddy-simulation (DES), which require switching between RANS and LES formalism. LES on RANS grid is appealing because first, it requires minimal changes to a production code; second, it is more cost-effective than LES; third, it converges to LES; and most importantly, it accurately predicts flows with separation. This work quantifies the benefit of LES on RANS-like grids as compared to RANS on the same grids. Three canonical cases are considered: periodic hill, backward-facing step, and jet in cross flow. We conduct direct numerical simulation (DNS), proper LES on LES grids, LES on RANS-quality grids, and RANS. We show that while the LES solutions on the RANS-quality grids are not grid converged, they are twice as accurate as the RANS on the same grids.
UR - http://www.scopus.com/inward/record.url?scp=85185534356&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85185534356&partnerID=8YFLogxK
U2 - 10.1115/IMECE2023-116879
DO - 10.1115/IMECE2023-116879
M3 - Conference contribution
AN - SCOPUS:85185534356
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Fluids Engineering
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2023 International Mechanical Engineering Congress and Exposition, IMECE 2023
Y2 - 29 October 2023 through 2 November 2023
ER -