LARGE-EDDY SIMULATION OF SEPARATED FLOWS ON UNCONVENTIONALLY COARSE GRIDS

Yuanwei BIn, George I. Park, Yu Lv, Xiang I.A. Yang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

We examine and benchmark the emerging idea of applying the large-eddy simulation (LES) formalism to unconventionally coarse grids where RANS would be considered more appropriate at first glance. We distinguish this idea from very-large-eddy-simulation (VLES) and detached-eddy-simulation (DES), which require switching between RANS and LES formalism. LES on RANS grid is appealing because first, it requires minimal changes to a production code; second, it is more cost-effective than LES; third, it converges to LES; and most importantly, it accurately predicts flows with separation. This work quantifies the benefit of LES on RANS-like grids as compared to RANS on the same grids. Three canonical cases are considered: periodic hill, backward-facing step, and jet in cross flow. We conduct direct numerical simulation (DNS), proper LES on LES grids, LES on RANS-quality grids, and RANS. We show that while the LES solutions on the RANS-quality grids are not grid converged, they are twice as accurate as the RANS on the same grids.

Original languageEnglish (US)
Title of host publicationFluids Engineering
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791887660
DOIs
StatePublished - 2023
EventASME 2023 International Mechanical Engineering Congress and Exposition, IMECE 2023 - New Orleans, United States
Duration: Oct 29 2023Nov 2 2023

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume9

Conference

ConferenceASME 2023 International Mechanical Engineering Congress and Exposition, IMECE 2023
Country/TerritoryUnited States
CityNew Orleans
Period10/29/2311/2/23

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'LARGE-EDDY SIMULATION OF SEPARATED FLOWS ON UNCONVENTIONALLY COARSE GRIDS'. Together they form a unique fingerprint.

Cite this