Lattice dynamics, thermodynamics and elastic properties of C22-Zr6FeSn2 from first-principles calculations

Xuan Kai Feng, Siqi Shi, Jian Yun Shen, Shun Li Shang, Mei Yi Yao, Zi Kui Liu

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Since Zr-Fe-Sn is one of the key ternary systems for cladding and structural materials in nuclear industry, it is of significant importance to understand physicochemical properties related to Zr-Fe-Sn system. In order to design the new Zr alloys with advanced performance by CALPHAD method, the thermodynamic model for the lower order systems is required. In the present work, first-principles calculations are employed to obtain phonon, thermodynamic and elastic properties of Zr6FeSn2 with C22 structure and the end-members (C22-Zr6FeFe2, C22-Zr6SnSn2 and C22-Zr6SnFe2) in the model of (Zr)6(Fe, Sn)2(Fe, Sn)1. It is found that the imaginary phonon modes are absent for C22-Zr6FeSn2 and C22-Zr6SnSn2, indicating they are dynamically stable, while the other two end-members are unstable. Gibbs energies of C22-Zr6FeSn2 and C22-Zr6SnSn2 are obtained from the quasiharmonic phonon approach and can be added in the thermodynamic database: Nuclearbase. The C22-Zr6FeSn2’s single-crystal elasticity tensor components along with polycrystalline bulk, shear and Young's moduli are computed with a least-squares approach based upon the stress tensor computed from first-principles method. The results indicate that distortion is more difficult in the directions normal the c-axis than along to it.

Original languageEnglish (US)
Pages (from-to)461-469
Number of pages9
JournalJournal of Nuclear Materials
Volume479
DOIs
StatePublished - Oct 1 2016

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • General Materials Science
  • Nuclear Energy and Engineering

Fingerprint

Dive into the research topics of 'Lattice dynamics, thermodynamics and elastic properties of C22-Zr6FeSn2 from first-principles calculations'. Together they form a unique fingerprint.

Cite this