Lattice QCD at the physical point meets SU (2) chiral perturbation theory

Stephan Dürr, Zoltán Fodor, Christian Hoelbling, Stefan Krieg, Thorsten Kurth, Laurent Lellouch, Thomas Lippert, Rehan Malak, Thibaut Métivet, Antonin Portelli, Alfonso Sastre, Kálmán Szabó

Research output: Contribution to journalArticlepeer-review

52 Scopus citations


We perform a detailed, fully correlated study of the chiral behavior of the pion mass and decay constant, based on 2+1 flavor lattice QCD simulations. These calculations are implemented using tree-level, O(a)-improved Wilson fermions, at four values of the lattice spacing down to 0.054 fm and all the way down to below the physical value of the pion mass. They allow a sharp comparison with the predictions of SU(2) chiral perturbation theory (χPT) and a determination of some of its low energy constants. In particular, we systematically explore the range of applicability of next-to-leading order (NLO) SU(2) χPT in two different expansions: the first in quark mass (x expansion), and the second in pion mass (ξ expansion). We find that these expansions begin showing signs of failure for Mπ≳300MeV, for the typical percent-level precision of our Nf=2+1 lattice results. We further determine the LO low energy constants (LECs), F=88.0±1.3±0.2 and BMS¯(2GeV)=2.61(6)(1)GeV, and the related quark condensate, ΣMS¯(2GeV)=(272±4±1MeV)3, as well as the NLO ones, -¯3=2.6(5)(3) and -¯4=3.7(4)(2), with fully controlled uncertainties. We also explore the next-to-next-to-leading order (NNLO) expansions and the values of NNLO LECs. In addition, we show that the lattice results favor the presence of chiral logarithms. We further demonstrate how the absence of lattice results with pion masses below 200 MeV can lead to misleading results and conclusions. Our calculations allow a fully controlled, ab initio determination of the pion decay constant with a total 1% error, which is in excellent agreement with experiment.

Original languageEnglish (US)
Article number114504
JournalPhysical Review D - Particles, Fields, Gravitation and Cosmology
Issue number11
StatePublished - Dec 16 2014

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Physics and Astronomy (miscellaneous)


Dive into the research topics of 'Lattice QCD at the physical point meets SU (2) chiral perturbation theory'. Together they form a unique fingerprint.

Cite this