LEARNABILITY LOCK: AUTHORIZED LEARNABILITY CONTROL THROUGH ADVERSARIAL INVERTIBLE TRANSFORMATIONS

Weiqi Peng, Jinghui Chen

Research output: Contribution to conferencePaperpeer-review

3 Scopus citations

Abstract

Owing much to the revolution of information technology, the recent progress of deep learning benefits incredibly from the vastly enhanced access to data available in various digital formats. However, in certain scenarios, people may not want their data being used for training commercial models and thus studied how to attack the learnability of deep learning models. Previous works on learnability attack only consider the goal of preventing unauthorized exploitation on the specific dataset but not the process of restoring the learnability for authorized cases. To tackle this issue, this paper introduces and investigates a new concept called “learnability lock” for controlling the model's learnability on a specific dataset with a special key. In particular, we propose adversarial invertible transformation, that can be viewed as a mapping from image to image, to slightly modify data samples so that they become “unlearnable” by machine learning models with negligible loss of visual features. Meanwhile, one can unlock the learnability of the dataset and train models normally using the corresponding key. The proposed learnability lock leverages class-wise perturbation that applies a universal transformation function on data samples of the same label. This ensures that the learnability can be easily restored with a simple inverse transformation while remaining difficult to be detected or reverse-engineered. We empirically demonstrate the success and practicability of our method on visual classification tasks.

Original languageEnglish (US)
StatePublished - 2022
Event10th International Conference on Learning Representations, ICLR 2022 - Virtual, Online
Duration: Apr 25 2022Apr 29 2022

Conference

Conference10th International Conference on Learning Representations, ICLR 2022
CityVirtual, Online
Period4/25/224/29/22

All Science Journal Classification (ASJC) codes

  • Language and Linguistics
  • Computer Science Applications
  • Education
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'LEARNABILITY LOCK: AUTHORIZED LEARNABILITY CONTROL THROUGH ADVERSARIAL INVERTIBLE TRANSFORMATIONS'. Together they form a unique fingerprint.

Cite this