Learning electric vehicle driver range anxiety with an initial state of charge-oriented gradient boosting approach

Yang Song, Xianbiao Hu

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

This manuscript focuses on the modeling of electric vehicle (EV) driver’s range anxiety, a fear that a vehicle does not have sufficient range, or state of charge (SOC) of the battery pack, to reach its destination and would strand its occupants. Despite numerous research studies on the modeling of charging behaviors, modeling efforts to understand at what battery percentages do EV drivers charge their vehicles, and what are the associated contributing factors, are rather limited. To this end, an ensemble learning model based on gradient boosting is developed. The model sequentially fits new predictors to new residuals of the previous prediction and, then, minimizes the loss when adding the latest prediction. A total of 18 features are defined and extracted from the multisource data, which cover information on driver, vehicles, stations, traffic conditions, as well as spatial-temporal context information of the charging events. The analyzed dataset includes 4.5-year’s charging event log data from 3,096 users and 468 public charging stations in Kansas City Missouri, and the macroscopic travel demand model maintained by the metropolitan planning organization. The result shows the proposed model achieved a satisfactory result with a R square value of 0.54 and root mean square error of 0.14, both better than multiple linear regression model and random forest model. To reduce range anxiety, it is suggested that the priorities of deploying new charging facilities should be given to the areas with higher daily traffic prediction, with more conservative EV users or that are further from residential areas.

Original languageEnglish (US)
Pages (from-to)238-256
Number of pages19
JournalJournal of Intelligent Transportation Systems: Technology, Planning, and Operations
Volume27
Issue number2
DOIs
StatePublished - 2023

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Software
  • Information Systems
  • Automotive Engineering
  • Aerospace Engineering
  • Computer Science Applications
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Learning electric vehicle driver range anxiety with an initial state of charge-oriented gradient boosting approach'. Together they form a unique fingerprint.

Cite this