Learning embeddings of intersections on road networks

Meng Xiang Wang, Wang Chien Lee, Tao Yang Fu, Ge Yu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

30 Scopus citations

Abstract

Road network is a basic component of intelligent transportation systems (ITS) in smart city. Informative representation of road networks is important as it is essential to a wide variety of ITS applications. In this paper, we propose a neural network representation learning model, namely Intersection of Road Network to Vector (IRN2Vec), to learn embeddings of road intersections that encode rich information in a road network by exploring geo-locality and intrinsic properties of intersections and moving behaviors of road users. In addition to model design, several issues unique to IRN2Vec, including data preparation for model training and various relationships among intersections, are examined. We evaluate the learned embeddings via extensive experiments on three real-world datasets using three downstream test cases, including prediction of traffic signals and crossings on intersections and travel time estimation. Experimental results show that the proposed IRN2Vec outperforms three existing methods, DeepWalk, LINE and Node2vec, in terms of F1-score in predicting traffic signals (22.21% to 23.84%) and crossings (8.65% to 11.65%), and mean absolute error (MAE) in travel time estimation (9.87% to 19.28%).

Original languageEnglish (US)
Title of host publication27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2019
EditorsFarnoush Banaei-Kashani, Goce Trajcevski, Ralf Hartmut Guting, Lars Kulik, Shawn Newsam
PublisherAssociation for Computing Machinery
Pages309-318
Number of pages10
ISBN (Electronic)9781450369091
DOIs
StatePublished - Nov 5 2019
Event27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2019 - Chicago, United States
Duration: Nov 5 2019Nov 8 2019

Publication series

NameGIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems

Conference

Conference27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2019
Country/TerritoryUnited States
CityChicago
Period11/5/1911/8/19

All Science Journal Classification (ASJC) codes

  • Earth-Surface Processes
  • Computer Science Applications
  • Modeling and Simulation
  • Computer Graphics and Computer-Aided Design
  • Information Systems

Fingerprint

Dive into the research topics of 'Learning embeddings of intersections on road networks'. Together they form a unique fingerprint.

Cite this