TY - JOUR
T1 - Learning Hidden Influences in Large-Scale Dynamical Social Networks
T2 - A Data-Driven Sparsity-Based Approach, in Memory of Roberto Tempo
AU - Ravazzi, Chiara
AU - Dabbene, Fabrizio
AU - Lagoa, Constantino
AU - Proskurnikov, Anton V.
N1 - Publisher Copyright:
© 1991-2012 IEEE.
PY - 2021/10
Y1 - 2021/10
N2 - The processes of information diffusion across social networks (for example, the spread of opinions and the formation of beliefs) are attracting substantial interest in disciplines ranging from behavioral sciences to mathematics and engineering (see "Summary"). Since the opinions and behaviors of each individual are influenced by interactions with others, understanding the structure of interpersonal influences is a key ingredient to predict, analyze, and, possibly, control information and decisions [1]. With the rapid proliferation of social media platforms that provide instant messaging, blogging, and other networking services (see "Online Social Networks") people can easily share news, opinions, and preferences. Information can reach a broad audience much faster than before, and opinion mining and sentiment analysis are becoming key challenges in modern society [2]. The first anecdotal evidence of this fact is probably the use that the Obama campaign made of social networks during the 2008 U.S. presidential election [3]. More recently, several news outlets stated that Facebook users played a major role in spreading fake news that might have influenced the outcome of the 2016 U.S. presidential election [4]. This can be explained by the phenomena of homophily and biased assimilation [5]-[7] in social networks, which correspond to the tendency of people to follow the behaviors of their friends and establish relationships with like-minded individuals.
AB - The processes of information diffusion across social networks (for example, the spread of opinions and the formation of beliefs) are attracting substantial interest in disciplines ranging from behavioral sciences to mathematics and engineering (see "Summary"). Since the opinions and behaviors of each individual are influenced by interactions with others, understanding the structure of interpersonal influences is a key ingredient to predict, analyze, and, possibly, control information and decisions [1]. With the rapid proliferation of social media platforms that provide instant messaging, blogging, and other networking services (see "Online Social Networks") people can easily share news, opinions, and preferences. Information can reach a broad audience much faster than before, and opinion mining and sentiment analysis are becoming key challenges in modern society [2]. The first anecdotal evidence of this fact is probably the use that the Obama campaign made of social networks during the 2008 U.S. presidential election [3]. More recently, several news outlets stated that Facebook users played a major role in spreading fake news that might have influenced the outcome of the 2016 U.S. presidential election [4]. This can be explained by the phenomena of homophily and biased assimilation [5]-[7] in social networks, which correspond to the tendency of people to follow the behaviors of their friends and establish relationships with like-minded individuals.
UR - http://www.scopus.com/inward/record.url?scp=85115175754&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85115175754&partnerID=8YFLogxK
U2 - 10.1109/MCS.2021.3092810
DO - 10.1109/MCS.2021.3092810
M3 - Article
AN - SCOPUS:85115175754
SN - 1066-033X
VL - 41
SP - 61
EP - 103
JO - IEEE Control Systems
JF - IEEE Control Systems
IS - 5
ER -