TY - JOUR
T1 - Learning Performance Maximizing Ensembles with Explainability Guarantees
AU - Pisztora, Vincent
AU - Li, Jia
N1 - Publisher Copyright:
Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2024/3/25
Y1 - 2024/3/25
N2 - In this paper we propose a method for the optimal allocation of observations between an intrinsically explainable glass box model and a black box model. An optimal allocation being defined as one which, for any given explainability level (i.e. the proportion of observations for which the explainable model is the prediction function), maximizes the performance of the ensemble on the underlying task, and maximizes performance of the explainable model on the observations allocated to it, subject to the maximal ensemble performance condition. The proposed method is shown to produce such explainability optimal allocations on a benchmark suite of tabular datasets across a variety of explainable and black box model types. These learned allocations are found to consistently maintain ensemble performance at very high explainability levels (explaining 74% of observations on average), and in some cases even outperform both the component explainable and black box models while improving explainability.
AB - In this paper we propose a method for the optimal allocation of observations between an intrinsically explainable glass box model and a black box model. An optimal allocation being defined as one which, for any given explainability level (i.e. the proportion of observations for which the explainable model is the prediction function), maximizes the performance of the ensemble on the underlying task, and maximizes performance of the explainable model on the observations allocated to it, subject to the maximal ensemble performance condition. The proposed method is shown to produce such explainability optimal allocations on a benchmark suite of tabular datasets across a variety of explainable and black box model types. These learned allocations are found to consistently maintain ensemble performance at very high explainability levels (explaining 74% of observations on average), and in some cases even outperform both the component explainable and black box models while improving explainability.
UR - http://www.scopus.com/inward/record.url?scp=85189635330&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85189635330&partnerID=8YFLogxK
U2 - 10.1609/aaai.v38i13.29378
DO - 10.1609/aaai.v38i13.29378
M3 - Conference article
AN - SCOPUS:85189635330
SN - 2159-5399
VL - 38
SP - 14617
EP - 14624
JO - Proceedings of the AAAI Conference on Artificial Intelligence
JF - Proceedings of the AAAI Conference on Artificial Intelligence
IS - 13
T2 - 38th AAAI Conference on Artificial Intelligence, AAAI 2024
Y2 - 20 February 2024 through 27 February 2024
ER -