Learning to Rank Visual Stories from Human Ranking Data

Chi Yang Hsu, Yun Wei Chu, Vincent Chen, Kuan Chieh Lo, Chacha Chen, Ting Hao Huang, Lun Wei Ku

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations


Visual storytelling (VIST) is a typical vision and language task that has seen extensive development in the natural language generation research domain. However, it remains unclear whether conventional automatic evaluation metrics for text generation are applicable on VIST. In this paper, we present the VHED (VIST Human Evaluation Data) dataset, which first re-purposes human evaluation results for automatic evaluation; hence we develop Vrank (VIST ranker), a novel reference-free VIST metric for story evaluation. We first show that the results from commonly adopted automatic metrics for text generation have little correlation with those obtained from human evaluation, which motivates us to directly utilize human evaluation results to learn the automatic evaluation model. In the experiments, we evaluate the generated texts to predict story ranks using our model as well as other reference-based and reference-free metrics. Results show that Vrank prediction is significantly more aligned to human evaluation than other metrics with almost 30% higher accuracy when ranking story pairs. Moreover, we demonstrate that only Vrank shows human-like behavior in its strong ability to find better stories when the quality gap between two stories is high. Finally, we show the superiority of Vrank by its generalizability to pure textual stories, and conclude that this reuse of human evaluation results puts Vrank in a strong position for continued future advances.

Original languageEnglish (US)
Title of host publicationACL 2022 - 60th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers)
EditorsSmaranda Muresan, Preslav Nakov, Aline Villavicencio
PublisherAssociation for Computational Linguistics (ACL)
Number of pages14
ISBN (Electronic)9781955917216
StatePublished - 2022
Event60th Annual Meeting of the Association for Computational Linguistics, ACL 2022 - Dublin, Ireland
Duration: May 22 2022May 27 2022

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
ISSN (Print)0736-587X


Conference60th Annual Meeting of the Association for Computational Linguistics, ACL 2022

All Science Journal Classification (ASJC) codes

  • Computer Science Applications
  • Linguistics and Language
  • Language and Linguistics

Cite this