Learning to Synthesize Data for Semantic Parsing

Bailin Wang, Wenpeng Yin, Xi Victoria Lin, Caiming Xiong

Research output: Chapter in Book/Report/Conference proceedingConference contribution

24 Scopus citations

Abstract

Synthesizing data for semantic parsing has gained increasing attention recently. However, most methods require handcrafted (high-precision) rules in their generative process, hindering the exploration of diverse unseen data. In this work, we propose a generative model which features a (non-neural) PCFG that models the composition of programs (e.g., SQL), and a BART-based translation model that maps a program to an utterance. Due to the simplicity of PCFG and pre-trained BART, our generative model can be efficiently learned from existing data at hand. Moreover, explicitly modeling compositions using PCFG leads to a better exploration of unseen programs, thus generate more diverse data. We evaluate our method in both in-domain and out-of-domain settings of text-to-SQL parsing on the standard benchmarks of GEOQUERY and SPIDER, respectively. Our empirical results show that the synthesized data generated from our model can substantially help a semantic parser achieve better compositional and domain generalization.

Original languageEnglish (US)
Title of host publicationNAACL-HLT 2021 - 2021 Conference of the North American Chapter of the Association for Computational Linguistics
Subtitle of host publicationHuman Language Technologies, Proceedings of the Conference
PublisherAssociation for Computational Linguistics (ACL)
Pages2760-2766
Number of pages7
ISBN (Electronic)9781954085466
DOIs
StatePublished - 2021
Event2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021 - Virtual, Online
Duration: Jun 6 2021Jun 11 2021

Publication series

NameNAACL-HLT 2021 - 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference

Conference

Conference2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021
CityVirtual, Online
Period6/6/216/11/21

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Hardware and Architecture
  • Information Systems
  • Software

Fingerprint

Dive into the research topics of 'Learning to Synthesize Data for Semantic Parsing'. Together they form a unique fingerprint.

Cite this