LEARNING VECTOR FIELDS OF DIFFERENTIAL EQUATIONS ON MANIFOLDS WITH GEOMETRICALLY CONSTRAINED OPERATOR-VALUED KERNELS

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We address the problem of learning ordinary differential equations (ODEs) on manifolds. Existing machine learning methods, particularly those using neural networks, often struggle with high computational demands. To overcome this issue, we introduce a geometrically constrained operator-valued kernel that allows us to represent vector fields on tangent bundles of smooth manifolds. The construction of the kernel imposes the geometric constraints that are estimated from the data and ensures the computational feasibility for learning high dimensional systems of ODEs. Once the vector fields are estimated, e.g., by the kernel ridge regression, we need an ODE solver that guarantees the solution to stay on (or close to) the manifold. To overcome this issue, we propose a geometry-preserving ODE solver that approximates the exponential maps corresponding to the ODE solutions. We deduce a theoretical error bound for the proposed solver that guarantees the approximate solutions to lie on the manifold in the limit of large data. We verify the effectiveness of the proposed approach on high-dimensional dynamical systems, including the cavity flow problem, the beating and travelling waves in Kuramoto-Sivashinsky equations, and the reaction-diffusion dynamics.

Original languageEnglish (US)
Title of host publication13th International Conference on Learning Representations, ICLR 2025
PublisherInternational Conference on Learning Representations, ICLR
Pages66069-66101
Number of pages33
ISBN (Electronic)9798331320850
StatePublished - 2025
Event13th International Conference on Learning Representations, ICLR 2025 - Singapore, Singapore
Duration: Apr 24 2025Apr 28 2025

Publication series

Name13th International Conference on Learning Representations, ICLR 2025

Conference

Conference13th International Conference on Learning Representations, ICLR 2025
Country/TerritorySingapore
CitySingapore
Period4/24/254/28/25

All Science Journal Classification (ASJC) codes

  • Language and Linguistics
  • Computer Science Applications
  • Education
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'LEARNING VECTOR FIELDS OF DIFFERENTIAL EQUATIONS ON MANIFOLDS WITH GEOMETRICALLY CONSTRAINED OPERATOR-VALUED KERNELS'. Together they form a unique fingerprint.

Cite this