Lemna: Explaining deep learning based security applications

Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, Xinyu Xing

Research output: Chapter in Book/Report/Conference proceedingConference contribution

243 Scopus citations

Abstract

While deep learning has shown a great potential in various domains, the lack of transparency has limited its application in security or safety-critical areas. Existing research has attempted to develop explanation techniques to provide interpretable explanations for each classification decision. Unfortunately, current methods are optimized for non-security tasks (e.g., image analysis). Their key assumptions are often violated in security applications, leading to a poor explanation fidelity. In this paper, we propose LEMNA, a high-fidelity explanation method dedicated for security applications. Given an input data sample, LEMNA generates a small set of interpretable features to explain how the input sample is classified. The core idea is to approximate a local area of the complex deep learning decision boundary using a simple interpretable model. The local interpretable model is specially designed to (1) handle feature dependency to better work with security applications (e.g., binary code analysis); and (2) handle nonlinear local boundaries to boost explanation fidelity. We evaluate our system using two popular deep learning applications in security (a malware classifier, and a function start detector for binary reverse-engineering). Extensive evaluations show that LEMNA’s explanation has a much higher fidelity level compared to existing methods. In addition, we demonstrate practical use cases of LEMNA to help machine learning developers to validate model behavior, troubleshoot classification errors, and automatically patch the errors of the target models.

Original languageEnglish (US)
Title of host publicationCCS 2018 - Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security
PublisherAssociation for Computing Machinery
Pages364-379
Number of pages16
ISBN (Electronic)9781450356930
DOIs
StatePublished - Oct 15 2018
Event25th ACM Conference on Computer and Communications Security, CCS 2018 - Toronto, Canada
Duration: Oct 15 2018 → …

Publication series

NameProceedings of the ACM Conference on Computer and Communications Security
ISSN (Print)1543-7221

Other

Other25th ACM Conference on Computer and Communications Security, CCS 2018
Country/TerritoryCanada
CityToronto
Period10/15/18 → …

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Lemna: Explaining deep learning based security applications'. Together they form a unique fingerprint.

Cite this