TY - JOUR
T1 - Leukemia-induced dysfunctional TIM-3+CD4+ bone marrow T cells increase risk of relapse in pediatric B-precursor ALL patients
AU - Blaeschke, Franziska
AU - Willier, Semjon
AU - Stenger, Dana
AU - Lepenies, Mareike
AU - Horstmann, Martin A.
AU - Escherich, Gabriele
AU - Zimmermann, Martin
AU - Rojas Ringeling, Francisca
AU - Canzar, Stefan
AU - Kaeuferle, Theresa
AU - Rohlfs, Meino
AU - Binder, Vera
AU - Klein, Christoph
AU - Feuchtinger, Tobias
N1 - Funding Information:
Acknowledgements The authors thank the patients and their families for participating in the study. We thank Tanja Weißer, Nicola Habjan and Nadine Stoll for excellent technical assistance. This work was supported by the Elterninitiative Ebersberg, Elterninitiative Intern 3, Bettina Braeu Stiftung, Gesellschaft für KinderKrebsForschung e.V. and Dr. Sepp und Hanne Sturm Gedaechtnisstiftung. S.W. was supported by the Else-Kröner-Fresenius Stiftung and D.S. was supported by the German Cancer Research Center/German Cancer Consortium (DKTK).
Publisher Copyright:
© 2020, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2020/10/1
Y1 - 2020/10/1
N2 - Interaction of malignancies with tissue-specific immune cells has gained interest for prognosis and intervention of emerging immunotherapies. We analyzed bone marrow T cells (bmT) as tumor-infiltrating lymphocytes in pediatric precursor-B cell acute lymphoblastic leukemia (ALL). Based on data from 100 patients, we show that ALL is associated with late-stage CD4+ phenotype and loss of early CD8+ T cells. The inhibitory exhaustion marker TIM-3 on CD4+ bmT increased relapse risk (RFS = 94.6/70.3%) confirmed by multivariate analysis. The hazard ratio of TIM-3 expression nearly reached the hazard ratio of MRD (7.1 vs. 8.0) indicating that patients with a high frequency of TIM-3+CD4+ bone marrow T cells at initial diagnosis have a 7.1-fold increased risk to develop ALL relapse. Comparison of wild type primary T cells to CRISPR/Cas9-mediated TIM-3 knockout and TIM-3 overexpression confirmed the negative effect of TIM-3 on T cell responses against ALL. TIM-3+CD4+ bmT are increased in ALL overexpressing CD200, that leads to dysfunctional antileukemic T cell responses. In conclusion, TIM-3-mediated interaction between bmT and leukemia cells is shown as a strong risk factor for relapse in pediatric B-lineage ALL. CD200/TIM-3-signaling, rather than PD-1/PD-L1, is uncovered as a mechanism of T cell dysfunction in ALL with major implication for future immunotherapies.
AB - Interaction of malignancies with tissue-specific immune cells has gained interest for prognosis and intervention of emerging immunotherapies. We analyzed bone marrow T cells (bmT) as tumor-infiltrating lymphocytes in pediatric precursor-B cell acute lymphoblastic leukemia (ALL). Based on data from 100 patients, we show that ALL is associated with late-stage CD4+ phenotype and loss of early CD8+ T cells. The inhibitory exhaustion marker TIM-3 on CD4+ bmT increased relapse risk (RFS = 94.6/70.3%) confirmed by multivariate analysis. The hazard ratio of TIM-3 expression nearly reached the hazard ratio of MRD (7.1 vs. 8.0) indicating that patients with a high frequency of TIM-3+CD4+ bone marrow T cells at initial diagnosis have a 7.1-fold increased risk to develop ALL relapse. Comparison of wild type primary T cells to CRISPR/Cas9-mediated TIM-3 knockout and TIM-3 overexpression confirmed the negative effect of TIM-3 on T cell responses against ALL. TIM-3+CD4+ bmT are increased in ALL overexpressing CD200, that leads to dysfunctional antileukemic T cell responses. In conclusion, TIM-3-mediated interaction between bmT and leukemia cells is shown as a strong risk factor for relapse in pediatric B-lineage ALL. CD200/TIM-3-signaling, rather than PD-1/PD-L1, is uncovered as a mechanism of T cell dysfunction in ALL with major implication for future immunotherapies.
UR - http://www.scopus.com/inward/record.url?scp=85081924904&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85081924904&partnerID=8YFLogxK
U2 - 10.1038/s41375-020-0793-1
DO - 10.1038/s41375-020-0793-1
M3 - Article
C2 - 32203137
AN - SCOPUS:85081924904
SN - 0887-6924
VL - 34
SP - 2607
EP - 2620
JO - Leukemia
JF - Leukemia
IS - 10
ER -